![]() |
![]() |
Your cart is empty |
||
Showing 1 - 4 of 4 matches in All Departments
This book contains some of the results presented at the mini-symposium titled Emerging Problems in the Homogenization of Partial Differential Equations, held during the ICIAM2019 conference in Valencia in July 2019. The papers cover a large range of topics, problems with weak regularity data involving renormalized solutions, eigenvalue problems for complicated shapes of the domain, homogenization of partial differential problems with strongly alternating boundary conditions of Robin type with large parameters, multiscale analysis of the potential action along a neuron with a myelinated axon, and multi-scale model of magnetorheological suspensions. The volume is addressed to scientists who deal with complex systems that presents several elements (characteristics, constituents...) of very different scales, very heterogeneous, and search for homogenized models providing an effective (macroscopic) description of their behaviors.
Composite materials are widely used in industry and include such well known examples as superconductors and optical fibers. However, modeling these materials is difficult, since they often has different properties at different points. The mathematical theory of homogenization is designed to handle this problem. The theory uses an idealized homogenous material to model a real composite while taking into account the microscopic structure. This introduction to homogenization theory develops the natural framework of the theory with four chapters on variational methods for partial differential equations. It then discusses the homogenization of several kinds of second-order boundary value problems. It devotes separate chapters to the classical examples of stead and non-steady heat equations, the wave equation, and the linearized system of elasticity. It includes numerous illustrations and examples.
The book extensively introduces classical and variational partial differential equations (PDEs) to graduate and post-graduate students in Mathematics. The topics, even the most delicate, are presented in a detailed way. The book consists of two parts which focus on second order linear PDEs. Part I gives an overview of classical PDEs, that is, equations which admit strong solutions, verifying the equations pointwise. Classical solutions of the Laplace, heat, and wave equations are provided. Part II deals with variational PDEs, where weak (variational) solutions are considered. They are defined by variational formulations of the equations, based on Sobolev spaces. A comprehensive and detailed presentation of these spaces is given. Examples of variational elliptic, parabolic, and hyperbolic problems with different boundary conditions are discussed.
This book contains some of the results presented at the mini-symposium titled Emerging Problems in the Homogenization of Partial Differential Equations, held during the ICIAM2019 conference in Valencia in July 2019. The papers cover a large range of topics, problems with weak regularity data involving renormalized solutions, eigenvalue problems for complicated shapes of the domain, homogenization of partial differential problems with strongly alternating boundary conditions of Robin type with large parameters, multiscale analysis of the potential action along a neuron with a myelinated axon, and multi-scale model of magnetorheological suspensions. The volume is addressed to scientists who deal with complex systems that presents several elements (characteristics, constituents...) of very different scales, very heterogeneous, and search for homogenized models providing an effective (macroscopic) description of their behaviors.
|
![]() ![]() You may like...
Turnout! - Mobilizing Voters in an…
Charles Derber, Suren Moodliar, …
Hardcover
R2,018
Discovery Miles 20 180
|