Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 6 of 6 matches in All Departments
Volume V deals with the problems of turnover in the nervous system. "Turnover" is defined in different ways, and the term is used in different contexts. It is used rather broadly in the present volume, and intentionally so. The turnover of macromolecules is only one aspect; here "turnover" in dicates the simultaneous and coordinated formation and breakdown of macromolecular species. The complexities of cerebral protein turnover are shown in a separate chapter dealing with the synthesis of proteins, in another on breakdown, and in still another on the relationship of these two (showing how the two halves of turnover are controlled). The fact that most likely the two halves of protein turnover, synthesis and breakdown, are separated spatially and the mechanisms involved are different further emphasizes the complexity of macromolecular turnover. "Turnover" is used in a different context when the turnover of a cycle is discussed; but here again a number of complex metabolic reactions have to be interrelated and controlled; some such cycles are discussed briefly in this volume, additional cycles have been discussed with metabolism, and some cycles still await elucidation or discovery.
This is a collection of papers presented at the Topical Meeting on Optical BistabiJity (OB3) held December 2-4,1985 in Tucson, Arizona. The increase in attendance to almost 200 shows that interest continues to grow in the sub ject of optical bistability (OB) and its wider implications both in application to "optical digital computing" and to basic physics, notably instabilities and spatial effects. The maturing of the field is evidenced by the fact that the number of experimental papers has caught up with the number of theoretical ones. These trends were already apparent in OB2 and the 1984 Royal Society Meeting on Optical Bistabilty, Dynamical Nonlinearity and Photonic Logic. Progress in experiment.al topics included guided-wave OB, mostly ther mal, picol'econd switching, studies on quite a number of new materials, op tical computing, and pattern recognition using arrays of nonlinear etalons. Theoretical progress ranged from rather practical calculations on device per formance, noise effects on switching, and transverse and longitudinal spatial effects to fundamental studies of dynamics, instabilities, and chaos. The Conference also included both theoretical ideas on optical computer archit.ecture and intrinsic OB circuit elements such as as full adder as well as t.he first demonstration of an intrinsic optical circuit in the form of a cas cadable loop with bufferd st.ores. A first demostration of a simple pattern recognition algorithm using 2-D arrays of spots on a ZnSe int.erference filter was reported."
The scientific and technological importance of lasers has generated great interest in the field of cavity nonlinear optics. This book provides a thorough description of this subject in terms of modern dynamical systems theory, with an emphasis on deriving analytical results and highlighting their physical significance. The book applies physical models for active and passive cavities to a variety of problems in laser theory, optical bistability and parametric oscillators. Subjects include scaling laws, Hopf bifurcations, passive Q-switching, and Turing instabilities. Several of the topics treated cannot be found in other books, including swept control parameter dynamics, laser stability, multimode rate equations, and antiphase dynamics. The book stresses the connections between theoretical work and actual experimental results, and will be of great interest to graduate students and researchers in theoretical physics, nonlinear optics, and laser physics.
The scientific and technological importance of lasers has generated great interest in the field of cavity nonlinear optics. This book provides a thorough description of this subject in terms of modern dynamical systems theory. Throughout, the emphasis is on deriving analytical results and highlighting their physical significance. The early chapters introduce the physical models for active and passive cavities. In later chapters, these are applied to a variety of problems in laser theory, optical bistability and parametric oscillators. Subjects covered include scaling laws, Hopf bifurcations, passive Q-switching, and Turing instabilities. Several of the topics treated cannot be found in other books, including swept control parameter dynamics, laser stability, multimode rate equations, and antiphase dynamics. The book stresses the connections between theoretical work and actual experimental results, and will be of great interest to graduate students and researchers in theoretical physics, nonlinear optics, and laser physics.
|
You may like...
Mission Impossible 6: Fallout
Tom Cruise, Henry Cavill, …
Blu-ray disc
(1)
|