Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 4 of 4 matches in All Departments
Here, the authors present modern mathematical methods to solve problems of differential-operator inclusions and evolution variation inequalities which may occur in fields such as geophysics, aerohydrodynamics, or fluid dynamics. For the first time, they describe the detailed generalization of various approaches to the analysis of fundamentally nonlinear models and provide a toolbox of mathematical equations. These new mathematical methods can be applied to a broad spectrum of problems. Examples of these are phase changes, diffusion of electromagnetic, acoustic, vibro-, hydro- and seismoacoustic waves, or quantum mechanical effects. This is the second of two volumes dealing with the subject.
Here, the authors present modern methods of analysis for nonlinear systems which may occur in fields such as physics, chemistry, biology, or economics. They concentrate on the following topics, specific for such systems: (a) constructive existence results and regularity theorems for all weak solutions; (b) convergence results for solutions and their approximations; (c) uniform global behavior of solutions in time; and (d) pointwise behavior of solutions for autonomous problems with possible gaps by the phase variables. The general methodology for the investigation of dissipative dynamical systems with several applications including nonlinear parabolic equations of divergent form, nonlinear stochastic equations of parabolic type, unilateral problems, nonlinear PDEs on Riemannian manifolds with or without boundary, contact problems as well as particular examples is established. As such, the book is addressed to a wide circle of mathematical, mechanical and engineering readers.
Here, the authors present modern mathematical methods to solve problems of differential-operator inclusions and evolution variation inequalities which may occur in fields such as geophysics, aerohydrodynamics, or fluid dynamics. For the first time, they describe the detailed generalization of various approaches to the analysis of fundamentally nonlinear models and provide a toolbox of mathematical equations. These new mathematical methods can be applied to a broad spectrum of problems. Examples of these are phase changes, diffusion of electromagnetic, acoustic, vibro-, hydro- and seismoacoustic waves, or quantum mechanical effects. This is the first of two volumes dealing with the subject.
Here, the authors present modern methods of analysis for nonlinear systems which may occur in fields such as physics, chemistry, biology, or economics. They concentrate on the following topics, specific for such systems: (a) constructive existence results and regularity theorems for all weak solutions; (b) convergence results for solutions and their approximations; (c) uniform global behavior of solutions in time; and (d) pointwise behavior of solutions for autonomous problems with possible gaps by the phase variables. The general methodology for the investigation of dissipative dynamical systems with several applications including nonlinear parabolic equations of divergent form, nonlinear stochastic equations of parabolic type, unilateral problems, nonlinear PDEs on Riemannian manifolds with or without boundary, contact problems as well as particular examples is established. As such, the book is addressed to a wide circle of mathematical, mechanical and engineering readers.
|
You may like...
|