Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 5 of 5 matches in All Departments
This augmented and updated fourth edition introduces a new complement of computational tools and examples for each chapter and continues to provide a grounding in the tensor-based theory of elasticity for students in mechanical, civil, aeronautical and biomedical engineering and materials and earth science. Professor Gould's proven approach allows faculty to introduce this subject early on in an educational program, where students are able to understand and apply the basic notions of mechanics to stress analysis and move on to advanced work in continuum mechanics, plasticity, plate and shell theory, composite materials and finite element mechanics. With the introductory material on the use of MATLAB, students can apply this modern computational tool to solve classic elasticity problems. The detailed solutions of example problems using both analytical derivations and computational tools helps student to grasp the essence of elasticity and practical skills of applying the basic mechanics theorem.
This unique book highlights the state of the art of the booming field of atomic physics in the early 21st century. It contains the majority of the invited papers from an ongoing series of conferences, held every two years, devoted to forefront research and fundamental studies in basic atomic physics, broadly defined. This conference, held at the University of Connecticut in July 2008, is part of a series of conferences, which began in 1968 and had its historical origins in the molecular beam conferences of the I. I. Rabi group. It provides an archival and up-to-date summary of current research on atoms and simple molecules as well as their interactions with each other and with external fields, including degenerate Bose and Fermi quantum gases and interactions involving ultrafast lasers, strong field control of X-ray processes, and nanoscale and mesoscopic quantum systems. The work of three recent Nobel Laureates in atomic physics is included, beginning with a lecture by Eric Cornell on "When Is a Quantum Gas a Quantum Liquid?". There are also papers by Laureates Steven Chu and Roy Glauber. The volume also contains the IUPAP Young Scientist Prize lecture by Cheng Chin on "Exploring Universality of Few-Body Physics Based on Ultracold Atoms Near Feshbach Resonances".
This augmented and updated fourth edition introduces a new complement of computational tools and examples for each chapter and continues to provide a grounding in the tensor-based theory of elasticity for students in mechanical, civil, aeronautical and biomedical engineering and materials and earth science. Professor Gould's proven approach allows faculty to introduce this subject early on in an educational program, where students are able to understand and apply the basic notions of mechanics to stress analysis and move on to advanced work in continuum mechanics, plasticity, plate and shell theory, composite materials and finite element mechanics. With the introductory material on the use of MATLAB, students can apply this modern computational tool to solve classic elasticity problems. The detailed solutions of example problems using both analytical derivations and computational tools helps student to grasp the essence of elasticity and practical skills of applying the basic mechanics theorem.
Introduction to Linear Elasticity, 3rd Edition provides an applications-oriented grounding in the tensor-based theory of elasticity for students in mechanical, civil, aeronautical, biomedical engineering, as well as materials and earth science. The book is distinct from the traditional text aimed at graduate students in solid mechanics by introducing its subject at a level appropriate for advanced undergraduate and beginning graduate students. The author's presentation allows students to apply the basic notions of stress analysis and move on to advanced work in continuum mechanics, plasticity, plate and shell theory, composite materials, and finite method analysis.
The study ofthree-dimensional continua has been a traditional part of graduate education in solid mechanics for some time. With rational simplifications to the three-dimensional theory of elasticity, the engineering theories of medium-thin plates and of thin shells may be derived and applied to a large class of engi neering structures distinguished by a characteristically small dimension in one direction. Often, these theories are developed somewhat independently due to their distinctive geometrical and load-resistance characteristics. On the other hand, the two systems share a common basis and might be unified under the classification of Surface Structures after the German term Fliichentragwerke. This common basis is fully exploited in this book. A substantial portion of many traditional approaches to this subject has been devoted to constructing classical and approximate solutions to the governing equations of the system in order to proceed with applications. Within the context of analytical, as opposed to numerical, approaches, the limited general ity of many such solutions has been a formidable obstacle to applications involving complex geometry, material properties, and/or loading. It is now relatively routine to obtain computer-based solutions to quite complicated situations. However, the choice of the proper problem to solve through the selection of the mathematical model remains a human rather than a machine task and requires a basis in the theory of the subject."
|
You may like...
|