![]() |
![]() |
Your cart is empty |
||
Showing 1 - 7 of 7 matches in All Departments
The relation between mathematics and physics has a long history, in which the role of number theory and of other more abstract parts of mathematics has recently become more prominent. More than ten years after a first meeting in 1989 between number theorists and physicists at the Centre de Physique des Houches, a second 2-week event focused on the broader interface of number theory, geometry, and physics. This book is the result of that exciting meeting, and collects, in 2 volumes, extended versions of the lecture courses, followed by shorter texts on special topics, of eminent mathematicians and physicists. The present volume has three parts: Random matrices, Zeta functions, Dynamical systems. The companion volume is subtitled: On Conformal Field Theories, Discrete Groups and Renormalization and will be published in 2006 (Springer, 3-540-30307-3).
The present book contains fourteen expository contributions on various topics connected to Number Theory, or Arithmetics, and its relationships to Theoreti cal Physics. The first part is mathematically oriented; it deals mostly with ellip tic curves, modular forms, zeta functions, Galois theory, Riemann surfaces, and p-adic analysis. The second part reports on matters with more direct physical interest, such as periodic and quasiperiodic lattices, or classical and quantum dynamical systems. The contribution of each author represents a short self-contained course on a specific subject. With very few prerequisites, the reader is offered a didactic exposition, which follows the author's original viewpoints, and often incorpo rates the most recent developments. As we shall explain below, there are strong relationships between the different chapters, even though every single contri bution can be read independently of the others. This volume originates in a meeting entitled Number Theory and Physics, which took place at the Centre de Physique, Les Houches (Haute-Savoie, France), on March 7 - 16, 1989. The aim of this interdisciplinary meeting was to gather physicists and mathematicians, and to give to members of both com munities the opportunity of exchanging ideas, and to benefit from each other's specific knowledge, in the area of Number Theory, and of its applications to the physical sciences. Physicists have been given, mostly through the program of lectures, an exposition of some of the basic methods and results of Num ber Theory which are the most actively used in their branch."
Ten years after a 1989 meeting of number theorists and physicists at the Centre de Physique des Houches, a second event focused on the broader interface of number theory, geometry, and physics. This book is the first of two volumes resulting from that meeting. Broken into three parts, it covers Conformal Field Theories, Discrete Groups, and Renormalization, offering extended versions of the lecture courses and shorter texts on special topics.
7 Les Houches Number theory, or arithmetic, sometimes referred to as the queen of mathematics, is often considered as the purest branch of mathematics. It also has the false repu tation of being without any application to other areas of knowledge. Nevertheless, throughout their history, physical and natural sciences have experienced numerous unexpected relationships to number theory. The book entitled Number Theory in Science and Communication, by M.R. Schroeder (Springer Series in Information Sciences, Vol. 7, 1984) provides plenty of examples of cross-fertilization between number theory and a large variety of scientific topics. The most recent developments of theoretical physics have involved more and more questions related to number theory, and in an increasingly direct way. This new trend is especially visible in two broad families of physical problems. The first class, dynamical systems and quasiperiodicity, includes classical and quantum chaos, the stability of orbits in dynamical systems, K.A.M. theory, and problems with "small denominators", as well as the study of incommensurate structures, aperiodic tilings, and quasicrystals. The second class, which includes the string theory of fundamental interactions, completely integrable models, and conformally invariant two-dimensional field theories, seems to involve modular forms and p adic numbers in a remarkable way.
The present book contains fourteen expository contributions on various topics connected to Number Theory, or Arithmetics, and its relationships to Theoreti cal Physics. The first part is mathematically oriented; it deals mostly with ellip tic curves, modular forms, zeta functions, Galois theory, Riemann surfaces, and p-adic analysis. The second part reports on matters with more direct physical interest, such as periodic and quasiperiodic lattices, or classical and quantum dynamical systems. The contribution of each author represents a short self-contained course on a specific subject. With very few prerequisites, the reader is offered a didactic exposition, which follows the author's original viewpoints, and often incorpo rates the most recent developments. As we shall explain below, there are strong relationships between the different chapters, even though every single contri bution can be read independently of the others. This volume originates in a meeting entitled Number Theory and Physics, which took place at the Centre de Physique, Les Houches (Haute-Savoie, France), on March 7 - 16, 1989. The aim of this interdisciplinary meeting was to gather physicists and mathematicians, and to give to members of both com munities the opportunity of exchanging ideas, and to benefit from each other's specific knowledge, in the area of Number Theory, and of its applications to the physical sciences. Physicists have been given, mostly through the program of lectures, an exposition of some of the basic methods and results of Num ber Theory which are the most actively used in their branch."
The relation between mathematics and physics has a long history, in which the role of number theory and of other more abstract parts of mathematics has recently become more prominent. More than ten years after a first meeting in 1989 between number theorists and physicists at the Centre de Physique des Houches, a second 2-week event focused on the broader interface of number theory, geometry, and physics. This book is the result of that exciting meeting, and collects, in 2 volumes, extended versions of the lecture courses, followed by shorter texts on special topics, of eminent mathematicians and physicists. The present volume has three parts: Conformal Field Theories, Discrete Groups, Renomalization. The companion volume is subtitled: On Random Matrices, Zeta Functions and Dynamical Systems (Springer, 3-540-23189-7).
The relation between mathematics and physics has a long history, in which the role of number theory and of other more abstract parts of mathematics has recently become more prominent. More than ten years after a first meeting in 1989 between number theorists and physicists at the Centre de Physique des Houches, a second 2-week event focused on the broader interface of number theory, geometry, and physics. This book is the result of that exciting meeting, and collects, in 2 volumes, extended versions of the lecture courses, followed by shorter texts on special topics, of eminent mathematicians and physicists. The present volume has three parts: Random matrices, Zeta functions, Dynamical systems. The companion volume is subtitled: On Conformal Field Theories, Discrete Groups and Renormalization and will be published in 2006 (Springer, 3-540-30307-3).
|
![]() ![]() You may like...
Westworld: The Complete Series - Season…
Evan Rachel Wood, Thandiwe Newton, …
DVD
R1,134
Discovery Miles 11 340
|