Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 5 of 5 matches in All Departments
A signi?cant sector of the development of spectral theory outside the classical area of Hilbert space may be found amongst at multipliers de?ned on a complex commutative Banach algebra A. Although the general theory of multipliers for abstract Banach algebras has been widely investigated by several authors, it is surprising how rarely various aspects of the spectral theory, for instance Fredholm theory and Riesz theory, of these important classes of operators have been studied. This scarce consideration is even more surprising when one observes that the various aspects of spectral t- ory mentioned above are quite similar to those of a normal operator de?ned on a complex Hilbert space. In the last ten years the knowledge of the spectral properties of multip- ers of Banach algebras has increased considerably, thanks to the researches undertaken by many people working in local spectral theory and Fredholm theory. This research activity recently culminated with the publication of the book of Laursen and Neumann [214], which collects almost every thing that is known about the spectral theory of multipliers.
This monograph concerns the relationship between the local spectral theory and Fredholm theory of bounded linear operators acting on Banach spaces. The purpose of this book is to provide a first general treatment of the theory of operators for which Weyl-type or Browder-type theorems hold. The product of intensive research carried out over the last ten years, this book explores for the first time in a monograph form, results that were only previously available in journal papers. Written in a simple style, with sections and chapters following an easy, natural flow, it will be an invaluable resource for researchers in Operator Theory and Functional Analysis. The reader is assumed to be familiar with the basic notions of linear algebra, functional analysis and complex analysis.
A signi?cant sector of the development of spectral theory outside the classical area of Hilbert space may be found amongst at multipliers de?ned on a complex commutative Banach algebra A. Although the general theory of multipliers for abstract Banach algebras has been widely investigated by several authors, it is surprising how rarely various aspects of the spectral theory, for instance Fredholm theory and Riesz theory, of these important classes of operators have been studied. This scarce consideration is even more surprising when one observes that the various aspects of spectral t- ory mentioned above are quite similar to those of a normal operator de?ned on a complex Hilbert space. In the last ten years the knowledge of the spectral properties of multip- ers of Banach algebras has increased considerably, thanks to the researches undertaken by many people working in local spectral theory and Fredholm theory. This research activity recently culminated with the publication of the book of Laursen and Neumann [214], which collects almost every thing that is known about the spectral theory of multipliers.
Based on lectures given at an instructional course, this volume enables readers with a basic knowledge of functional analysis to access key research in the field. The authors survey several areas of current interest, making this volume ideal preparatory reading for students embarking on graduate work as well as for mathematicians working in related areas.
Based on lectures given at an instructional course, this volume enables readers with a basic knowledge of functional analysis to access key research in the field. The authors survey several areas of current interest, making this volume ideal preparatory reading for students embarking on graduate work as well as for mathematicians working in related areas.
|
You may like...
|