Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 5 of 5 matches in All Departments
The theory of set-valued maps and of differential inclusion is developed in recent years both as a field of his own and as an approach to control theory. The book deals with the theory of semilinear differential inclusions in infinite dimensional spaces. In this setting, problems of interest to applications do not suppose neither convexity of the map or compactness of the multi-operators. These assumption implies the development of the theory of measure of noncompactness and the construction of a degree theory for condensing mapping. Of particular interest is the approach to the case when the linear part is a generator of a condensing, strongly continuous semigroup. In this context, the existence of solutions for the Cauchy and periodic problems are proved as well as the topological properties of the solution sets. Examples of applications to the control of transmission line and to hybrid systems are presented.
This book offers a self-contained introduction to the theory of guiding functions methods, which can be used to study the existence of periodic solutions and their bifurcations in ordinary differential equations, differential inclusions and in control theory. It starts with the basic concepts of nonlinear and multivalued analysis, describes the classical aspects of the method of guiding functions, and then presents recent findings only available in the research literature. It describes essential applications in control theory, the theory of bifurcations, and physics, making it a valuable resource not only for "pure" mathematicians, but also for students and researchers working in applied mathematics, the engineering sciences and physics.
The C.I.M.E. session on Dynamical Systems, held in Cetraro (Italy), June 19-26, 2000, focused on the latest developments in several important areas in dynamical systems, with full development and historical context. The lectures of Chow and Mallet-Paret focus on the area of lattice differential systems, the lectures of Conto and Galleotti treat the classical problem of classification of orbits for two-dimensional autonomous systems with polynomial right sides, the lectures of Nussbaum focus on applications of fixed point theorems to the problem of limiting profiles for the solutions of singular perturbations of delay differential equations, and the lectures of Johnson and Mantellini deal with the existence of periodic and quasi-periodic orbits to non-autonomous systems. The volume will be of interest to researchers and graduate students working in these areas.
The volume contains the texts of four courses, given by the authors at a summer school that sought to present the state of the art in the growing field of topological methods in the theory of o.d.e. (in finite and infinitedimension), and to provide a forum for discussion of the wide variety of mathematical tools which are involved. The topics covered range from the extensions of the Lefschetz fixed point and the fixed point index on ANR's, to the theory of parity of one-parameter families of Fredholm operators, and from the theory of coincidence degree for mappings on Banach spaces to homotopy methods for continuation principles. CONTENTS: P. Fitzpatrick: The parity as an invariant for detecting bifurcation of the zeroes of one parameter families of nonlinear Fredholm maps.- M. Martelli: Continuation principles and boundary value problems.- J. Mawhin: Topological degree and boundary value problems for nonlinear differential equations.- R.D. Nussbaum: The fixed point index and fixed point theorems.
This book presents a study of neuroscience models and natural phenomena, such as tsunami waves and tornados. The first part discusses various mathematical models of tsunamis, including the Korteweg-de Vries equation, shallow water equations and the Camassa-Holm equation (CH). In order to study the dynamics of these models, the text uses the Cellular Nonlinear Networks (CNN) approach to discretize the governing equation using a suitable mathematical grid. The second part discusses some of the models arising in the field of neuroscience. It examines the Fitzhugh-Nagumo systems, which are very important for understanding the qualitative nature of nerve impulse propagation.The volume will be of interest to a wide-ranging audience, including PhD students, mathematicians, physicists, engineers and specialists in the domain of nonlinear waves and their applications.
|
You may like...
|