Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 6 of 6 matches in All Departments
The purpose of this monograph is to show that, in the radiation regime, there exists a Hamiltonian description of the dynamics of a massless scalar field, as well as of the dynamics of the gravitational field. The authors construct such a framework extending the previous work of Kijowski and Tulczyjew. They start by reviewing some elementary facts concerning Hamiltonian dynamical systems and then describe the geometric Hamiltonian framework, adequate for both the usual asymptotically flat-at-spatial-infinity regime and for the radiation regime. The text then gives a detailed description of the application of the new formalism to the case of the massless scalar field. Finally, the formalism is applied to the case of Einstein gravity. The Hamiltonian role of the Trautman--Bondi mass is exhibited. A Hamiltonian definition of angular momentum at null infinity is derived and analysed.
The Constraint Equations.- The Penrose Inequality.- The Global Existence Problem in General Relativity.- Smoothness at Null Infinity and the Structure of Initial Data.- Status Quo and Open Problems in the Numerical Construction of Spacetimes.- The Einstein-Vlasov System.- Future Complete U(1) Symmetric Einsteinian Spacetimes, the Unpolarized Case.- Future Complete Vacuum Spacetimes.- The Cauchy Problem on Spacetimes That Are Not Globally Hyperbolic.- Cheeger-Gromov Theory and Applications to General Relativity.- Null Geometry and the Einstein Equations.- Group Actions on Lorentz Spaces, Mathematical Aspects: A Survey.- Gauge, Diffeomorphisms, Initial-Value Formulation, Etc.
The book presents state-of-the-art results on the analysis of the Einstein equations and the large scale structure of their solutions. It combines in a unique way introductory chapters and surveys of various aspects of the analysis of the Einstein equations in the large. It discusses applications of the Einstein equations in geometrical studies and the physical interpretation of their solutions. Open problems concerning analytical and numerical aspects of the Einstein equations are pointed out. Background material on techniques in PDE theory, differential geometry, and causal theory is provided.
In one ofthe fundamental notions is that any physical theory of of energy the hand: in mechanics at one considers the objects energy of, say, moving in fieldtheories is one interested inthe offield masses; energy configurations. A unified treatment of this which both to mechanics question, applies and to field Hamiltonian a formalism. We will theory, proceeds through shortly reviewbelowhowsuch iscarried aprocedure out inthe ofscalarfields theory Minkowski let at this on mention that an space time; us, stage, important often inthe isthat ofthe issue, ignored conditions sat textbooks, boundary isfied the set of fields under consideration. While by this issuecanbe safely for when the ignored usual field many purposes considering theories, such scalar fields or the = as on electromagnetism, ft constj hypersurfaces, where t is a it sometimes critical Minkowski time, a rolewhen other plays of classes are considered. Inthe of the hypersurfaces case situation is gravity for t= worse: even Minkowskian slicesthe f constj asymptotically boundary terms crucial. is ofthe are one main differencesbetweentheArnowitt (This Deser Misner for Sect. 5. 4 mass which is (ADM) gravity (cf. below), given a andthe usual for by boundary integral, field theories in energyexpression Minkowski wheretheHamiltonian is volume space time, a usually integral. ) in field the itsmost role in Now, theory plays important theradiation energy where it can be radiated the field.
This book provides an introduction to the mathematics and physics of general relativity, its basic physical concepts, its observational implications, and the new insights obtained into the nature of space-time and the structure of the universe. It introduces some of the most striking aspects of Einstein's theory of gravitation: black holes, gravitational waves, stellar models, and cosmology. It contains a self-contained introduction to tensor calculus and Riemannian geometry, using in parallel the language of modern differential geometry and the coordinate notation, more familiar to physicists. The author has strived to achieve mathematical rigour, with all notions given careful mathematical meaning, while trying to maintain the formalism to the minimum fit-for-purpose. Familiarity with special relativity is assumed. The overall aim is to convey some of the main physical and geometrical properties of Einstein's theory of gravitation, providing a solid entry point to further studies of the mathematics and physics of Einstein equations.
Black holes present one of the most fascinating predictions of Einstein's general theory of relativity. There is strong evidence of their existence through observation of active galactic nuclei, including the centre of our galaxy, observations of gravitational waves, and others. There exists a large scientific literature on black holes, including many excellent textbooks at various levels. However, most of these steer clear from the mathematical niceties needed to make the theory of black holes a mathematical theory. Those which maintain a high mathematical standard are either focused on specific topics, or skip many details. The objective of this book is to fill this gap and present a detailed, mathematically oriented, extended introduction to the subject. The book provides a wide background to the current research on all mathematical aspects of the geometry of black hole spacetimes.
|
You may like...
|