|
Showing 1 - 8 of
8 matches in All Departments
Computer Vision is a rapidly growing field of research
investigating computational and algorithmic issues associated with
image acquisition, processing, and understanding. It serves tasks
like manipulation, recognition, mobility, and communication in
diverse application areas such as manufacturing, robotics,
medicine, security and virtual reality. This volume contains a
selection of papers devoted to theoretical foundations of computer
vision covering a broad range of fields, e.g. motion analysis,
discrete geometry, computational aspects of vision processes,
models, morphology, invariance, image compression, 3D
reconstruction of shape. Several issues have been identified to be
of essential interest to the community: non-linear operators; the
transition between continuous to discrete representations; a new
calculus of non-orthogonal partially dependent systems.
Experts from university and industry are presenting new
technologies for solving industrial problems and giving many
important and practicable impulses for new research. Topics
explored include NURBS, product engineering, object oriented
modelling, solid modelling, surface interrogation, feature
modelling, variational design, scattered data algorithms, geometry
processing, blending methods, smoothing and fairing algorithms,
spline conversion. This collection of 24 articles gives a
state-of-the-art survey of the relevant problems and issues in
geometric modelling.
The articles in this book give a comprehensive overview on the
whole field of validated numerics. The problems covered include
simultaneous systems of linear and nonlinear equations,
differential and integral equations and certain applications from
technical sciences. Furthermore some papers which improve the tools
are included. The book is a must for scientists working in
numerical analysis, computer science and in technical fields.
this gap. In sixteen survey articles the most important theoretical
results, algorithms and software methods of computer algebra are
covered, together with systematic references to literature. In
addition, some new results are presented. Thus the volume should be
a valuable source for obtaining a first impression of computer
algebra, as well as for preparing a computer algebra course or for
complementary reading. The preparation of some papers contained in
this volume has been supported by grants from the Austrian "Fonds
zur Forderung der wissenschaftlichen For schung" (Project No.
3877), the Austrian Ministry of Science and Research (Department
12, Dr. S. Hollinger), the United States National Science
Foundation (Grant MCS-8009357) and the Deutsche
Forschungsgemeinschaft (Lo-23 1-2). The work on the volume was
greatly facilitated by the opportunity for the editors to stay as
visitors at the Department of Computer and Information Sciences,
University of Delaware, at the General Electric Company Research
and Development Center, Schenectady, N. Y. , and at the
Mathematical Sciences Department, Rensselaer Polytechnic Institute,
Troy, N. Y. , respectively. Our thanks go to all these
institutions. The patient and experienced guidance and
collaboration of the Springer-Verlag Wien during all the stages of
production are warmly appreciated. The editors of the Cooperative
editor of Supplementum Computing B. Buchberger R. Albrecht G.
Collins R. Loos Contents Loos, R. : Introduction. . . . . . . . . .
. . . . . . . . . . . . . . . . 1 Buchberger, B. , Loos, R. :
Algebraic Simplification . . . . . . . . . . 11 Neubiiser, J. :
Computing with Groups and Their Character Tables. 45 Norman, A. C.
: Integration in Finite Terms. . . . . . . . . . . . . .
This volume contains mainly a collection of the invited lectures
which were given during a conference on "Fundamentals of Numerical
Computation," held in June, 5 - 8, 1979, on the occasion of the
centennial of the Technical University of Berlin. About hundred
scientists from several countries attended this conference. A
preceding meeting on "Fundamentals of Computer-Arithmetic" was held
in August, 1975, at the "Mathematisches Forschungsinstitut
Oberwolfach." The lectures of this conference have been published
as Supplementum 1 of Computing (Editors R. Albrecht, U. Kulisch).
After a period of four years of active research the purpose of the
Berlin-Conference was to give a broad survey of the present status
of the closely connected topics Interval Analysis, Mathematical
Foundation of Computer Arithmetic, Rounding Error Analysis and
Stability of Numerical Algorithms and to give prospects of future
activities in these fields. Besides the invited lectures 35 short
com munications, each of 20 minutes length, were given. We
gratefully acknowledge the support of the President of the
Technical University and of his Aussenreferat as well as of the
Department of Mathematics. Besides these institutions financial
support was given by AEG-Telefunken, Berlin, Allianz
Lebensversicherungs A.G., Stuttgart, CDC, Hamburg/Berlin, DAT A
100, Munchen, Gesellschaft von Freunden der TU Berlin e.V., Berlin
and Siemens AG., Berlin. Finally we express our thanks to Mrs. G.
Froehlich and Mrs. B. Trajanovic, who managed the paper work
before, during and after the conference."
Obwohl man annehmen kann, daB das gerundete Rechnen so alt ist wie
das Rechnen mit Zahlen iiberhaupt, hat es eine ausgedehnte und
systematische Anwendung erst durch die neuzeitlichen
Digitalrechenanlagen gefunden. Die zwangslliufige Begrenzung sowohl
des Gesamtspeichers wie der Bitanzahl der einzelnen Speicherzellen
und Register bedingt bei jeder Zahldarstellung eine Einschrlinkung
eines theoretischen, idealisierten, unendlichen Zahlenbereiches auf
eine endliche Teilmenge, in der die realen arithmetischen
Operationen konstruktiv erfolgen. Infolgedessen stimmen die Regeln
fiir dieses "gerundete" Rechnen im realen Bereich mit denen des
Rechnens im idealen Bereich nicht iiberein und verschiedene der
klassischen Eigenschaften arithmetischer Ver- kniipfungen,
beispielsweise im Korper der rationalen Zahlen die Assoziativitlit
und Distributivitlit, gehen bei Rundung verloren. Der gerundete
Bereich sowie die konstruktiv auszufiihrenden arithmetischen
Operationen sind natiirlich nicht Selbstzweck, sondem sie sollen in
zu definierendem Sinne eine Approximation zunI idealen Bereich und
zu den idealen arithmetischen Operationen darstellen. Seit einigen
lahren bestehen nun Versuche und Teilergebnisse zu einer axio-
matischen Begriindung und einer Theorie des gerundeten Rechnens.
Diese bezie- hen sich einerseits auf die Konstruktionsvorschrift
und deren Realisierung, nach der den idealen Zahlen bzw. einer
konstruktiv darstellbaren Untermenge hier- von gerundete Zahlen
zuzuordnen sind, urn gewisse Kriterien zu erfiiIlen, z. B.
Minimisierung der Abweichung des Nliherungsergebnisses yom exakten
Ergeb- nis bei Auswertung eines arithmetischen Ausdruckes mit
verschiedenen Daten im statistischen Mittel, Ausgabe eines
moglichst "kleinen" Zahlenbereiches, in dem das Ergebnis einer
idealen Rechnung mit Sicherheit (Intervall-Arithmetik) oder mit
vorgegebener Wahrscheinlichkeit liegt.
|
|