Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 4 of 4 matches in All Departments
The statistical analysis of discrete multivariate data has received a great deal of attention in the statistics literature over the past two decades. The develop ment ofappropriate models is the common theme of books such as Cox (1970), Haberman (1974, 1978, 1979), Bishop et al. (1975), Gokhale and Kullback (1978), Upton (1978), Fienberg (1980), Plackett (1981), Agresti (1984), Goodman (1984), and Freeman (1987). The objective of our book differs from those listed above. Rather than concentrating on model building, our intention is to describe and assess the goodness-of-fit statistics used in the model verification part of the inference process. Those books that emphasize model development tend to assume that the model can be tested with one of the traditional goodness-of-fit tests 2 2 (e.g., Pearson's X or the loglikelihood ratio G ) using a chi-squared critical value. However, it is well known that this can give a poor approximation in many circumstances. This book provides the reader with a unified analysis of the traditional goodness-of-fit tests, describing their behavior and relative merits as well as introducing some new test statistics. The power-divergence family of statistics (Cressie and Read, 1984) is used to link the traditional test statistics through a single real-valued parameter, and provides a way to consolidate and extend the current fragmented literature. As a by-product of our analysis, a new 2 2 statistic emerges "between" Pearson's X and the loglikelihood ratio G that has some valuable properties."
Abdominal Wall Hernias is the most up-to-date, comprehensive reference available on all aspects of hernia repair. It includes state-of-the-art approaches to conventional open repairs using tissue-to-tissue techniques, the use of prosthetic mesh, minimally invasive approaches, the repair of recurrent and massive hernias, pertinent anatomy, basic science, and emerging biomaterials. The authors present a full spectrum of procedures to enable readers to gain a broad knowledge of the multifaceted repair of hernias. Richly illustrated, this book is a vital resource for all general surgeons and surgeons-in-training.
The statistical analysis of discrete multivariate data has received a great deal of attention in the statistics literature over the past two decades. The develop ment ofappropriate models is the common theme of books such as Cox (1970), Haberman (1974, 1978, 1979), Bishop et al. (1975), Gokhale and Kullback (1978), Upton (1978), Fienberg (1980), Plackett (1981), Agresti (1984), Goodman (1984), and Freeman (1987). The objective of our book differs from those listed above. Rather than concentrating on model building, our intention is to describe and assess the goodness-of-fit statistics used in the model verification part of the inference process. Those books that emphasize model development tend to assume that the model can be tested with one of the traditional goodness-of-fit tests 2 2 (e.g., Pearson's X or the loglikelihood ratio G ) using a chi-squared critical value. However, it is well known that this can give a poor approximation in many circumstances. This book provides the reader with a unified analysis of the traditional goodness-of-fit tests, describing their behavior and relative merits as well as introducing some new test statistics. The power-divergence family of statistics (Cressie and Read, 1984) is used to link the traditional test statistics through a single real-valued parameter, and provides a way to consolidate and extend the current fragmented literature. As a by-product of our analysis, a new 2 2 statistic emerges "between" Pearson's X and the loglikelihood ratio G that has some valuable properties."
In 1937 there appeared a paper that was to have a profound influence on the progress of combinatorial enumeration, both in its theoretical and applied aspects. Entitled Kombinatorische Anzahlbest- immungen jUr Gruppen, Graphen und chemische Verbindungen, it was published in Acta Mathematica, Vol. 68, pp. 145 to 254. Its author, George Polya, was already a mathematician of considerable stature, well-known for outstanding work in many branches of mathematics, particularly analysis. The paper in Question was unusual in that it depended almost entirely on a single theorem -- the "Hauptsatz" of Section 4 -- a theorem which gave a method for solving a general type of enumera- tion problem. On the face of it, this is not something that one would expect to run to over 100 pages. Yet the range of the applica- tions of the theorem and of its ramifications was enormous, as Polya clearly showed. In the various sections of his paper he explored many applications to the enumeration of graphs, principally trees, and of chemical isomers, using his theorem to present a comprehen- sive and unified treatment of problems which had previously been solved, if at all, only by ad hoc methods. In the final section he investigated the asymptotic properties of these enumerational results, bringing to bear his formidable insight as an analyst.
|
You may like...
|