Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 1 of 1 matches in All Departments
The macrocosm and the microcosm have many common features. When two
energetic particles or nuclei collide a 'fireball' is created which
decays into other particles. This fireball consists of quarks and
gluons and is similar to the fireball of which the early universe
was made when quarks and gluons moved freely in a quark-gluon
plasma. The size and lifetime of this fireball is of fundamental
interest for our understanding of subatomic physics and of the
evolution of the cosmos. Its determination currently plays an
essential role in the ongoing search of the quark-gluon plasma in
the laboratory. As explained in this book, the space-time
characteristics of the fireball (and other properties of sources of
elementary particles) can be determined by using the method of
intensity interferometry which is also applied in astronomy for the
determination of star sizes. This method is based on the quantum
effect of Bose-Einstein correlations, an effect which leads also to
Bose-Einstein condensates responsible for lasers, superfluids and
superconductors. It is for this reason that interest in the subject
has seen such remarkable growth in recent years. Despite this
interest, Introduction to Bose-Einstein Correlations and Subatomic
Interferometry is the first textbook dedicated to the Bose-Einstein
correlations and their applications.
|
You may like...
|