Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 7 of 7 matches in All Departments
These notes are based on lectures presented during the seminar on " Asymptotic Statistics" held at SchloB Reisensburg, Gunzburg, May 29-June 5, 1988. They consist of two parts, the theory of asymptotic expansions in statistics and probabilistic aspects of the asymptotic distribution theory in nonparametric statistics. Our intention is to provide a comprehensive presentation of these two subjects, leading from elementary facts to the advanced theory and recent results. Prospects for further research are also included. We would like to thank all participants for their stimulating discussions and their interest in the subjects, which made lecturing very pleasant. Special thanks are due H. Zimmer for her excellent typing. We would also like to take this opportunity to to express our thanks to the Gesellschaft fur mathematische Forschung and to the Deutsche Mathematiker Vereinigung, especially to Professor G. Fischer, for the opportunity to present these lectures and to the Birkhauser Verlag for the publication of these lecture notes. R. Bhattacharya, M. Denker Part I: Asymptotic Expansions in Statistics Rabi Bhattacharya 11 1. CRAMER-EDGEWORTH EXPANSIONS Let Q be a probability measure on (IRk, B"), B" denoting the Borel sigmafield on IR". Assume that the s - th absolute moment of Q is finite, (1.1) P. := J II x lis Q(dx) < 00, for some integer s;::: 3, and that Q is normalized, (1.2) J x(i)Q(dx) = 0 (1 ~ i ~ k), J x(i)x(j)Q(dx) = Dij (1 ~ i,j ~ k).
This book introduces in a systematic manner a general nonparametric theory of statistics on manifolds, with emphasis on manifolds of shapes. The theory has important and varied applications in medical diagnostics, image analysis, and machine vision. An early chapter of examples establishes the effectiveness of the new methods and demonstrates how they outperform their parametric counterparts. Inference is developed for both intrinsic and extrinsic Frechet means of probability distributions on manifolds, then applied to shape spaces defined as orbits of landmarks under a Lie group of transformations - in particular, similarity, reflection similarity, affine and projective transformations. In addition, nonparametric Bayesian theory is adapted and extended to manifolds for the purposes of density estimation, regression and classification. Ideal for statisticians who analyze manifold data and wish to develop their own methodology, this book is also of interest to probabilists, mathematicians, computer scientists, and morphometricians with mathematical training.
This book introduces in a systematic manner a general nonparametric theory of statistics on manifolds, with emphasis on manifolds of shapes. The theory has important and varied applications in medical diagnostics, image analysis, and machine vision. An early chapter of examples establishes the effectiveness of the new methods and demonstrates how they outperform their parametric counterparts. Inference is developed for both intrinsic and extrinsic Frechet means of probability distributions on manifolds, then applied to shape spaces defined as orbits of landmarks under a Lie group of transformations - in particular, similarity, reflection similarity, affine and projective transformations. In addition, nonparametric Bayesian theory is adapted and extended to manifolds for the purposes of density estimation, regression and classification. Ideal for statisticians who analyze manifold data and wish to develop their own methodology, this book is also of interest to probabilists, mathematicians, computer scientists, and morphometricians with mathematical training.
These notes are based on lectures presented during the seminar on " Asymptotic Statistics" held at SchloB Reisensburg, Gunzburg, May 29-June 5, 1988. They consist of two parts, the theory of asymptotic expansions in statistics and probabilistic aspects of the asymptotic distribution theory in nonparametric statistics. Our intention is to provide a comprehensive presentation of these two subjects, leading from elementary facts to the advanced theory and recent results. Prospects for further research are also included. We would like to thank all participants for their stimulating discussions and their interest in the subjects, which made lecturing very pleasant. Special thanks are due H. Zimmer for her excellent typing. We would also like to take this opportunity to to express our thanks to the Gesellschaft fur mathematische Forschung and to the Deutsche Mathematiker Vereinigung, especially to Professor G. Fischer, for the opportunity to present these lectures and to the Birkhauser Verlag for the publication of these lecture notes. R. Bhattacharya, M. Denker Part I: Asymptotic Expansions in Statistics Rabi Bhattacharya 11 1. CRAMER-EDGEWORTH EXPANSIONS Let Q be a probability measure on (IRk, B"), B" denoting the Borel sigmafield on IR". Assume that the s - th absolute moment of Q is finite, (1.1) P. := J II x lis Q(dx) < 00, for some integer s;::: 3, and that Q is normalized, (1.2) J x(i)Q(dx) = 0 (1 ~ i ~ k), J x(i)x(j)Q(dx) = Dij (1 ~ i,j ~ k).
This graduate-level textbook is primarily aimed at graduate students of statistics, mathematics, science, and engineering who have had an undergraduate course in statistics, an upper division course in analysis, and some acquaintance with measure theoretic probability. It provides a rigorous presentation of the core of mathematical statistics. Part I of this book constitutes a one-semester course on basic parametric mathematical statistics. Part II deals with the large sample theory of statistics - parametric and nonparametric, and its contents may be covered in one semester as well. Part III provides brief accounts of a number of topics of current interest for practitioners and other disciplines whose work involves statistical methods.
This treatment provides an exposition of discrete time dynamic processes evolving over an infinite horizon. Chapter 1 reviews some mathematical results from the theory of deterministic dynamical systems, with particular emphasis on applications to economics. The theory of irreducible Markov processes, especially Markov chains, is surveyed in Chapter 2. Equilibrium and long run stability of a dynamical system in which the law of motion is subject to random perturbations is the central theme of Chapters 3-5. A unified account of relatively recent results, exploiting splitting and contractions, that have found applications in many contexts is presented in detail. Chapter 6 explains how a random dynamical system may emerge from a class of dynamic programming problems. With examples and exercises, readers are guided from basic theory to the frontier of applied mathematical research.
This graduate-level textbook is primarily aimed at graduate students of statistics, mathematics, science, and engineering who have had an undergraduate course in statistics, an upper division course in analysis, and some acquaintance with measure theoretic probability. It provides a rigorous presentation of the core of mathematical statistics. Part I of this book constitutes a one-semester course on basic parametric mathematical statistics. Part II deals with the large sample theory of statistics - parametric and nonparametric, and its contents may be covered in one semester as well. Part III provides brief accounts of a number of topics of current interest for practitioners and other disciplines whose work involves statistical methods.
|
You may like...
Persuasion - A-Level Set Text Student…
Jane Austen, Collins Gcse
Paperback
Women In Solitary - Inside The Female…
Shanthini Naidoo
Paperback
(1)
|