0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R5,000 - R10,000 (2)
  • -
Status
Brand

Showing 1 - 2 of 2 matches in All Departments

Bayesian Inference and Maximum Entropy Methods in Science and Engineering - MaxEnt 37, Jarinu, Brazil, July 09-14, 2017... Bayesian Inference and Maximum Entropy Methods in Science and Engineering - MaxEnt 37, Jarinu, Brazil, July 09-14, 2017 (Hardcover, 1st ed. 2018)
Adriano Polpo, Julio Stern, Francisco Louzada, Rafael Izbicki, Hellinton Takada
R5,124 Discovery Miles 51 240 Ships in 10 - 15 working days

These proceedings from the 37th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering (MaxEnt 2017), held in Sao Carlos, Brazil, aim to expand the available research on Bayesian methods and promote their application in the scientific community. They gather research from scholars in many different fields who use inductive statistics methods and focus on the foundations of the Bayesian paradigm, their comparison to objectivistic or frequentist statistics counterparts, and their appropriate applications. Interest in the foundations of inductive statistics has been growing with the increasing availability of Bayesian methodological alternatives, and scientists now face much more difficult choices in finding the optimal methods to apply to their problems. By carefully examining and discussing the relevant foundations, the scientific community can avoid applying Bayesian methods on a merely ad hoc basis. For over 35 years, the MaxEnt workshops have explored the use of Bayesian and Maximum Entropy methods in scientific and engineering application contexts. The workshops welcome contributions on all aspects of probabilistic inference, including novel techniques and applications, and work that sheds new light on the foundations of inference. Areas of application in these workshops include astronomy and astrophysics, chemistry, communications theory, cosmology, climate studies, earth science, fluid mechanics, genetics, geophysics, machine learning, materials science, medical imaging, nanoscience, source separation, thermodynamics (equilibrium and non-equilibrium), particle physics, plasma physics, quantum mechanics, robotics, and the social sciences. Bayesian computational techniques such as Markov chain Monte Carlo sampling are also regular topics, as are approximate inferential methods. Foundational issues involving probability theory and information theory, as well as novel applications of inference to illuminate the foundations of physical theories, are also of keen interest.

Bayesian Inference and Maximum Entropy Methods in Science and Engineering - MaxEnt 37, Jarinu, Brazil, July 09-14, 2017... Bayesian Inference and Maximum Entropy Methods in Science and Engineering - MaxEnt 37, Jarinu, Brazil, July 09-14, 2017 (Paperback, Softcover reprint of the original 1st ed. 2018)
Adriano Polpo, Julio Stern, Francisco Louzada, Rafael Izbicki, Hellinton Takada
R5,093 Discovery Miles 50 930 Ships in 10 - 15 working days

These proceedings from the 37th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering (MaxEnt 2017), held in Sao Carlos, Brazil, aim to expand the available research on Bayesian methods and promote their application in the scientific community. They gather research from scholars in many different fields who use inductive statistics methods and focus on the foundations of the Bayesian paradigm, their comparison to objectivistic or frequentist statistics counterparts, and their appropriate applications. Interest in the foundations of inductive statistics has been growing with the increasing availability of Bayesian methodological alternatives, and scientists now face much more difficult choices in finding the optimal methods to apply to their problems. By carefully examining and discussing the relevant foundations, the scientific community can avoid applying Bayesian methods on a merely ad hoc basis. For over 35 years, the MaxEnt workshops have explored the use of Bayesian and Maximum Entropy methods in scientific and engineering application contexts. The workshops welcome contributions on all aspects of probabilistic inference, including novel techniques and applications, and work that sheds new light on the foundations of inference. Areas of application in these workshops include astronomy and astrophysics, chemistry, communications theory, cosmology, climate studies, earth science, fluid mechanics, genetics, geophysics, machine learning, materials science, medical imaging, nanoscience, source separation, thermodynamics (equilibrium and non-equilibrium), particle physics, plasma physics, quantum mechanics, robotics, and the social sciences. Bayesian computational techniques such as Markov chain Monte Carlo sampling are also regular topics, as are approximate inferential methods. Foundational issues involving probability theory and information theory, as well as novel applications of inference to illuminate the foundations of physical theories, are also of keen interest.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Narcissist Universalism - A…
Itzhak Benyamini Hardcover R3,875 Discovery Miles 38 750
Plainspeak
Astrid Alben Paperback R414 Discovery Miles 4 140
Pretty Little Liars TV Tie-In Edition
Sara Shepard Paperback R286 R271 Discovery Miles 2 710
The Crystal Heart Bottle Stopper
River Hardcover R530 Discovery Miles 5 300
Focus Geography: Grade 12: Learner's…
L. Dilley, J. Earle, … Paperback R417 Discovery Miles 4 170
Multiple Sclerosis - Etiology…
Michael Olek Hardcover R2,892 Discovery Miles 28 920
Twice The Glory - The Making Of The…
Lloyd Burnard, Khanyiso Tshwaku Paperback R340 R304 Discovery Miles 3 040
Being Jewish After The Destruction Of…
Peter Beinart Paperback R420 Discovery Miles 4 200
Full House - A Wild Cards Collection
George R. R. Martin Paperback R527 R497 Discovery Miles 4 970
Natural Reserve
Zadok Ben-David Hardcover R753 R647 Discovery Miles 6 470

 

Partners