![]() |
![]() |
Your cart is empty |
||
Showing 1 - 6 of 6 matches in All Departments
Electrostatic Accelerators have been at the forefront of modern technology since the development by Sir John Cockroft and Ernest Walton in 1932 of the first accelerator, which was the first to achieve nuclear transmutation and earned them the Nobel Prize in Physics in 1951. The applications of Cockroft and Walton's development have been far reaching, even into our kitchens where it is employed to generate the high voltage needed for the magnetron in microwave ovens. Other electrostatic accelerator related Nobel prize winning developments that have had a major socio-economic impact are; the electron microscope where the beams of electrons are produced by an electrostatic accelerator, X-rays and computer tomography (CT) scanners where the X-rays are produced using an electron accelerator and microelectronic technology where ion implantation is used to dope the semiconductor chips which form the basis of our computers, mobile phones and entertainment systems. Although the Electrostatic Accelerator field is over 90 years old, and only a handful of accelerators are used for their original purpose in nuclear physics, the field and the number of accelerators is growing more rapidly than ever. The objective of this book is to collect together the basic science and technology that underlies the Electrostatic Accelerator field so it can serve as a handbook, reference guide and textbook for accelerator engineers as well as students and researchers who work with Electrostatic Accelerators.
Electrostatic accelerators are an important and widespread subgroup within the broad spectrum of modern, large particle acceleration devices. They are specifically designed for applications that require high-quality ion beams in terms of energy stability and emittance at comparatively low energies (a few MeV). Their ability to accelerate virtually any kind of ion over a continuously tunable range of energies makes them a highly versatile tool for investigations in many research fields including, but not limited to, atomic and nuclear spectroscopy, heavy ion reactions, accelerator mass spectroscopy as well as ion-beam analysis and modification. The book is divided into three parts. The first part concisely introduces the field of accelerator technology and techniques that emphasize their major modern applications. The second part treats the electrostatic accelerator per se: its construction and operational principles as well as its maintenance. The third part covers all relevant applications in which electrostatic accelerators are the preferred tool for accelerator-based investigations. Since some topics are common to all types of accelerators, Electrostatic Accelerators will also be of value for those more familiar with other types of accelerators.
Energetic ion beam irradiation is the basis of a wide plethora of powerful research- and fabrication-techniques for materials characterisation and processing on a nanometre scale. Materials with tailored optical, magnetic and electrical properties can be fabricated by synthesis of nanocrystals by ion implantation, focused ion beams can be used to machine away and deposit material on a scale of nanometres and the scattering of energetic ions is a unique and quantitative tool for process development in high speed electronics and 3-D nanostructures with extreme aspect radios for tissue engineering and nano-fluidics lab-on-a-chip may be machined using proton beams. This book will benefit practitioners, researchers and graduate students working in the field of ion beams and application and more generally everyone concerned with the broad field of nanoscience and technology.
Energetic ion beam irradiation is the basis of a wide plethora of powerful research- and fabrication-techniques for materials characterisation and processing on a nanometre scale. Materials with tailored optical, magnetic and electrical properties can be fabricated by synthesis of nanocrystals by ion implantation, focused ion beams can be used to machine away and deposit material on a scale of nanometres and the scattering of energetic ions is a unique and quantitative tool for process development in high speed electronics and 3-D nanostructures with extreme aspect radios for tissue engineering and nano-fluidics lab-on-a-chip may be machined using proton beams. This book will benefit practitioners, researchers and graduate students working in the field of ion beams and application and more generally everyone concerned with the broad field of nanoscience and technology.
Electrostatic accelerators are an important and widespread subgroup within the broad spectrum of modern, large particle acceleration devices. They are specifically designed for applications that require high-quality ion beams in terms of energy stability and emittance at comparatively low energies (a few MeV). Their ability to accelerate virtually any kind of ion over a continuously tunable range of energies makes them a highly versatile tool for investigations in many research fields including, but not limited to, atomic and nuclear spectroscopy, heavy ion reactions, accelerator mass spectroscopy as well as ion-beam analysis and modification. The book is divided into three parts. The first part concisely introduces the field of accelerator technology and techniques that emphasize their major modern applications. The second part treats the electrostatic accelerator per se: its construction and operational principles as well as its maintenance. The third part covers all relevant applications in which electrostatic accelerators are the preferred tool for accelerator-based investigations. Since some topics are common to all types of accelerators, Electrostatic Accelerators will also be of value for those more familiar with other types of accelerators.
Electrostatic Accelerators have been at the forefront of modern technology since the development by Sir John Cockroft and Ernest Walton in 1932 of the first accelerator, which was the first to achieve nuclear transmutation and earned them the Nobel Prize in Physics in 1951. The applications of Cockroft and Walton's development have been far reaching, even into our kitchens where it is employed to generate the high voltage needed for the magnetron in microwave ovens. Other electrostatic accelerator related Nobel prize winning developments that have had a major socio-economic impact are; the electron microscope where the beams of electrons are produced by an electrostatic accelerator, X-rays and computer tomography (CT) scanners where the X-rays are produced using an electron accelerator and microelectronic technology where ion implantation is used to dope the semiconductor chips which form the basis of our computers, mobile phones and entertainment systems. Although the Electrostatic Accelerator field is over 90 years old, and only a handful of accelerators are used for their original purpose in nuclear physics, the field and the number of accelerators is growing more rapidly than ever. The objective of this book is to collect together the basic science and technology that underlies the Electrostatic Accelerator field so it can serve as a handbook, reference guide and textbook for accelerator engineers as well as students and researchers who work with Electrostatic Accelerators.
|
![]() ![]() You may like...
|