Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 6 of 6 matches in All Departments
Vibro-impact dynamics has occupied a wide spectrum of studies by dyn- icists, physicists, and mathematicians. These studies may be classi?ed into three main categories: modeling, mapping and applications. The main te- niques used in modeling of vibro-impact systems include phenomenological modelings, Hertzian models, and non-smooth coordinate transformations- velopedbyZhuravlevandIvanov. Oneofthemostcriticalsituationsimpeded invibro-impactsystemsisthegrazingbifurcation. Grazingbifurcationisu- ally studied through discontinuity mapping techniques, which are very useful to uncover the rich dynamics in the process of impact interaction. Note the availablemappings arevalidonly intheabsenceofnon-impactnonlinearities. Complex dynamic phenomena of vibro-impact systems include subharmonic oscillations, chaotic motion, and coexistence of di?erent attractors for the sameexcitationand systemparametersbut under di?erent initial conditions. Selectedapplicationsofvibro-impactdynamics. Theseincludelumpedand continuous systems. Lumped systems cover a bouncing ball on an oscillating barrier, mass-spring-dashpot systems, normal and inverted pendulums, the spherical pendulum, the ship roll motion against icebergs, joints with fr- play, rotor-stator rubbing in rotating machinery, vocal folds, microactuators, strings, beams, pipes conveying ?uids with end-restraints, nuclear reactors and heat exchangers, and plates. These applications are discussed within the framework of the deterministic theory. Under random excitation the tre- ment requires special tools. The techniques of equivalent linearization and stochastic averaging have been applied to limited number of problems. One of the most bene?cial outcomesof vibro-impact dynamics is the development of impact dampers, which have witnessed signi?cant activities over the last four decades and have been used in several applications. On the other hand, vibro-impacthas detrimental e?ects on the operationsof mechanicalsystems and damage of pipes and rods in nuclear reactors.
The aim of this International Symposium on Dynamics of Vibro-Impact Systems is to provide a forum for the discussion of recent developments in the theory and industrial applications of vibro-impact ocean systems. A special effort has been made to invite active researchers from engineering, science, and applied mathematics communities. This symposium has indeed updated engineers with recent analytical developments of vibro-impact dynamics and at the same time allowed engineers and industrial practitioners to alert mathematicians with their unresolved issues. The symposium was held in Troy, Michigan, during the period October 1-3, 2008. It included 28 presentations grouped as follows: The first group comprises of nine papers dealing with the interaction of ocean systems with slamming waves and floating ice. It also covers related topics such as sloshing-slamming dynamics, and non-smooth dynamics associated with offshore structures. Moreover, it includes control issues pertaining to marine surface vessels. The second group consists of fifteen papers treats the interaction of impact systems with friction and their control, Hertzian contact dynamics, parameter variation in vibro-impact oscillators, random excitation of vibro-impact systems, vibro-impact dampers, oscillators with a bouncing ball, limiting phase trajectory corresponding to energy exchange between the oscillator and external source, frequency-energy distribution in oscillators with impacts, and discontinuity mapping. The third group is covered in four papers and addresses some industrial applications such as hand-held percussion machines, rub-impact dynamics of rotating machinery, impact fatigue in joint structures.
Vibro-impact dynamics has occupied a wide spectrum of studies by dyn- icists, physicists, and mathematicians. These studies may be classi?ed into three main categories: modeling, mapping and applications. The main te- niques used in modeling of vibro-impact systems include phenomenological modelings, Hertzian models, and non-smooth coordinate transformations- velopedbyZhuravlevandIvanov. Oneofthemostcriticalsituationsimpeded invibro-impactsystemsisthegrazingbifurcation. Grazingbifurcationisu- ally studied through discontinuity mapping techniques, which are very useful to uncover the rich dynamics in the process of impact interaction. Note the availablemappings arevalidonly intheabsenceofnon-impactnonlinearities. Complex dynamic phenomena of vibro-impact systems include subharmonic oscillations, chaotic motion, and coexistence of di?erent attractors for the sameexcitationand systemparametersbut under di?erent initial conditions. Selectedapplicationsofvibro-impactdynamics. Theseincludelumpedand continuous systems. Lumped systems cover a bouncing ball on an oscillating barrier, mass-spring-dashpot systems, normal and inverted pendulums, the spherical pendulum, the ship roll motion against icebergs, joints with fr- play, rotor-stator rubbing in rotating machinery, vocal folds, microactuators, strings, beams, pipes conveying ?uids with end-restraints, nuclear reactors and heat exchangers, and plates. These applications are discussed within the framework of the deterministic theory. Under random excitation the tre- ment requires special tools. The techniques of equivalent linearization and stochastic averaging have been applied to limited number of problems. One of the most bene?cial outcomesof vibro-impact dynamics is the development of impact dampers, which have witnessed signi?cant activities over the last four decades and have been used in several applications. On the other hand, vibro-impacthas detrimental e?ects on the operationsof mechanicalsystems and damage of pipes and rods in nuclear reactors.
The aim of this International Symposium on Dynamics of Vibro-Impact Systems is to provide a forum for the discussion of recent developments in the theory and industrial applications of vibro-impact ocean systems. A special effort has been made to invite active researchers from engineering, science, and applied mathematics communities. This symposium has indeed updated engineers with recent analytical developments of vibro-impact dynamics and at the same time allowed engineers and industrial practitioners to alert mathematicians with their unresolved issues. The symposium was held in Troy, Michigan, during the period October 1-3, 2008. It included 28 presentations grouped as follows: The first group comprises of nine papers dealing with the interaction of ocean systems with slamming waves and floating ice. It also covers related topics such as sloshing-slamming dynamics, and non-smooth dynamics associated with offshore structures. Moreover, it includes control issues pertaining to marine surface vessels. The second group consists of fifteen papers treats the interaction of impact systems with friction and their control, Hertzian contact dynamics, parameter variation in vibro-impact oscillators, random excitation of vibro-impact systems, vibro-impact dampers, oscillators with a bouncing ball, limiting phase trajectory corresponding to energy exchange between the oscillator and external source, frequency-energy distribution in oscillators with impacts, and discontinuity mapping. The third group is covered in four papers and addresses some industrial applications such as hand-held percussion machines, rub-impact dynamics of rotating machinery, impact fatigue in joint structures.
The problem of liquid sloshing in moving or stationary containers remains of great concern to aerospace, civil, and nuclear engineers; physicists; designers of road tankers and ship tankers; and mathematicians. Beginning with the fundamentals of liquid sloshing theory, this book takes the reader systematically from basic theory to advanced analytical and experimental results in a self-contained and coherent format. The book is divided into four sections. Part I deals with the theory of linear liquid sloshing dynamics; Part II addresses the nonlinear theory of liquid sloshing dynamics, Faraday waves, and sloshing impacts; Part III presents the problem of linear and nonlinear interaction of liquid sloshing dynamics with elastic containers and supported structures; and Part IV considers the fluid dynamics in spinning containers and microgravity sloshing. This book will be invaluable to researchers and graduate students in mechanical and aeronautical engineering, designers of liquid containers, and applied mathematicians.
Coherent and systematic, this text explores the behavior of linear
and nonlinear dynamical systems subject to parametric random
vibrations, by means of the theory of stochastic processes,
stochastic differential equations, and applied dynamics. It
distills decades of research to formulate new stochastic stability
theorems and analytical techniques for determining the random
response of nonlinear systems. In addition, it resolves
controversies and paradoxes related to the interpretation of
certain stochastic processes and the use of analytical
methods.
|
You may like...
|