Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 9 of 9 matches in All Departments
In two volumes, Planning Production and Inventories in the Extended Enterprise: A State of the Art Handbook examines production planning across the extended enterprise against a backdrop of important gaps between theory and practice. The early chapters describe the multifaceted nature of production planning problems and reveal many of the core complexities. The middle chapters describe recent research on theoretical techniques to manage these complexities. Accounts of production planning system currently in use in various industries are included in the later chapters. Throughout the two volumes there are suggestions on promising directions for future work focused on closing the gaps. Included in Volume 1 are papers on the Historical Foundations of Manufacturing Planning and Control; Advanced Planning and Scheduling Systems; Sustainable Product Development and Manufacturing; Uncertainty and Production Planning; Demand Forecasting; Production Capacity; Data in Production and Supply Chain Planning; Financial Uncertainty in SC Models; Field Based Research in Production Control; Collaborative SCM; Sequencing and Coordination in Outsourcing and Subcontracting Operations; Inventory Management; Pricing, Variety and Inventory Decisions for Substitutable Items; Perishable and Aging Inventories; Optimization Models of Production Planning Problems; Aggregate Modeling of Manufacturing Systems; Robust Stability Analysis of Decentralized Supply Chains; Simulation in Production Planning; and Simulation-Optimization in Support of Tactical and Strategic Enterprise Decisions. Included in Volume 2 are papers on Workload and Lead-Time Considerations under Uncertainty; Production Planning and Scheduling; Production Planning Effects on Dynamic Behavior of A Simple Supply Chain; Supply and Demand in Assemble-to-Order Supply Chains; Quantitative Risk Assessment in Supply Chains; A Practical Multi-Echelon Inventory Model with Semiconductor Application; Supplier Managed Inventory for Custom Items with Long Lead Times; Decentralized Supply Chain Formation; A Cooperative Game Approach to Procurement Network Formation; Flexible SC Contracts with Options; Build-to-Order Meets Global Sourcing for the Auto Industry; Practical Modeling in Automotive Production; Discrete Event Simulation Models; Diagnosing and Tuning a Statistical Forecasting System; Enterprise-Wide SC Planning in Semiconductor and Package Operations; Production Planning in Plastics; SC Execution Using Predictive Control; Production Scheduling in The Pharmaceutical Industry; Computerized Scheduling for Continuous Casting in Steelmaking; and Multi-Model Production Planning and Scheduling in an Industrial Environment.
From the Preface: This festschrift is devoted to recognize the career of a man who not only witnessed the growth of operations research from its inception, but also contributed significantly to this growth. Dr. Salah E. Elmaghraby received his doctorate degree from Cornell University in 1958, and since then, his scholarly contributions have enriched the fields of production planning and scheduling and project scheduling. This collection of papers is contributed in his honor by his students, colleagues, and acquaintances. It offers a tribute to the inspiration received from his work, and from his guidance and advice over the years, and recognizes the legacy of his many contributions. Dr. Elmaghraby is a pioneer in the area of project scheduling (in particular, project planning and control through network models, for which he coined the term 'activity networks'.) In his initial work in this area, he developed an algebra based on signal flow graphs and semi-Markov processes for analyzing generalized activity networks involving activities with probabilistic durations. This work led to the development of what was later known as the Graphical Evaluation and Review Technique (GERT), and GERT simulation models. He has made fundamental contributions in determining criticality indices for activities, in developing methodologies for project compression and time/cost analysis, and in the use of stochastic and chance-constrained programming and Petri Nets for the analysis of activity networks. This volume brings together fourteen contributions, which can be viewed under the following three main themes: operations research and its application in production planning; project scheduling, and production scheduling, inspired by, and in many cases based on, Dr. Elmaghraby's work in these areas. The first five chapters are devoted to the first theme, followed by four chapters each devoted to the other two, respectively. An additional chapter is devoted to the vulnerability of multimodal freight systems.
The factory scheduling problem, that of allocating machines to competing jobs in manufacturing facilities to optimize or at least improve system performance, is encountered in many different manufacturing environments. Given the competitive pressures faced by many companies in today's rapidly changing global markets, improved factory scheduling should contribute to a flrm's success. However, even though an extensive body of research on scheduling models has been in existence for at least the last three decades, most of the techniques currently in use in industry are relatively simplistic, and have not made use of this body of knowledge. In this book we describe a systematic, long-term research effort aimed at developing effective scheduling algorithms for complex manufacturing facilities. We focus on a speciflc industrial context, that of semiconductor manufacturing, and try to combine knowledge of the physical production system with the methods and results of scheduling research to develop effective approximate solution procedures for these problems. The class of methods we suggest, decomposition methods, constitute a broad family of heuristic approaches to large, NP-hard scheduling problems which can be applied in other environments in addition to those studied in this book.
In two volumes, Planning Production and Inventories in the Extended Enterprise: A State of the Art Handbook examines production planning across the extended enterprise against a backdrop of important gaps between theory and practice. The early chapters describe the multifaceted nature of production planning problems and reveal many of the core complexities. The middle chapters describe recent research on theoretical techniques to manage these complexities. Accounts of production planning system currently in use in various industries are included in the later chapters. Throughout the two volumes there are suggestions on promising directions for future work focused on closing the gaps.
This book presents a comprehensive overview of recent developments in production planning. The monograph begins with an introductory chapter reviewing the need for these production planning models, that operate by determining time-phased releases of work into the facility or supply chain, relating these to the Manufacturing Planning and Control (MPC) and Advanced Planning and Scheduling (APS) frameworks, that form the basis of most academic research and industrial practice. The extensive body of work on Workload Control is also placed in this context, and proves the need for improved models with a discussion of the difficulties, these approaches encounter. The next two chapters present a detailed review of the state of the art in optimization models based on exogenous planned lead times, and examines the cases where these can take both integer and fractional values. The difficulties arising in estimating planned lead times are consistent with factory behavior which are highlighted, noting that many of these lead to non-convex optimization models. Attempts to address these difficulties by iterative multimodel approaches, that combine simulation and mathematical programming, are also discussed in detail. The next three chapters of the volume address the set of techniques developed using clearing functions, which represent the expected output of a resource in a planning period, as a function of the expected workload of the resource, during that period. The chapters on this subject propose a basic optimization model for multiple products, discuss the difficulties of this model and some possible solutions. It also reviews prior work, and discuss a number of alternative formulations of the clearing function concept with their respective advantages and disadvantages. Applications to lot sizing decisions and a number of other specific problems are also described. This volume concludes with an assessment of the state of the art described in the volume, and several directions for future work.
From the Preface: This festschrift is devoted to recognize the career of a man who not only witnessed the growth of operations research from its inception, but also contributed significantly to this growth. Dr. Salah E. Elmaghraby received his doctorate degree from Cornell University in 1958, and since then, his scholarly contributions have enriched the fields of production planning and scheduling and project scheduling. This collection of papers is contributed in his honor by his students, colleagues, and acquaintances. It offers a tribute to the inspiration received from his work, and from his guidance and advice over the years, and recognizes the legacy of his many contributions. Dr. Elmaghraby is a pioneer in the area of project scheduling (in particular, project planning and control through network models, for which he coined the term 'activity networks'.) In his initial work in this area, he developed an algebra based on signal flow graphs and semi-Markov processes for analyzing generalized activity networks involving activities with probabilistic durations. This work led to the development of what was later known as the Graphical Evaluation and Review Technique (GERT), and GERT simulation models. He has made fundamental contributions in determining criticality indices for activities, in developing methodologies for project compression and time/cost analysis, and in the use of stochastic and chance-constrained programming and Petri Nets for the analysis of activity networks. This volume brings together fourteen contributions, which can be viewed under the following three main themes: operations research and its application in production planning; project scheduling, and production scheduling, inspired by, and in many cases based on, Dr. Elmaghraby's work in these areas. The first five chapters are devoted to the first theme, followed by four chapters each devoted to the other two, respectively. An additional chapter is devoted to the vulnerability of multimodal freight systems.
In two volumes, Planning Production and Inventories in the Extended Enterprise: A State of the Art Handbook examines production planning across the extended enterprise against a backdrop of important gaps between theory and practice. The early chapters describe the multifaceted nature of production planning problems and reveal many of the core complexities. The middle chapters describe recent research on theoretical techniques to manage these complexities. Accounts of production planning system currently in use in various industries are included in the later chapters. Throughout the two volumes there are suggestions on promising directions for future work focused on closing the gaps. Included in Volume 1 are papers on the Historical Foundations of Manufacturing Planning and Control; Advanced Planning and Scheduling Systems; Sustainable Product Development and Manufacturing; Uncertainty and Production Planning; Demand Forecasting; Production Capacity; Data in Production and Supply Chain Planning; Financial Uncertainty in SC Models; Field Based Research in Production Control; Collaborative SCM; Sequencing and Coordination in Outsourcing and Subcontracting Operations; Inventory Management; Pricing, Variety and Inventory Decisions for Substitutable Items; Perishable and Aging Inventories; Optimization Models of Production Planning Problems; Aggregate Modeling of Manufacturing Systems; Robust Stability Analysis of Decentralized Supply Chains; Simulation in Production Planning; and Simulation-Optimization in Support of Tactical and Strategic Enterprise Decisions. Included in Volume 2 are papers on Workload and Lead-Time Considerations under Uncertainty; Production Planning and Scheduling; Production Planning Effects on Dynamic Behavior of A Simple Supply Chain; Supply and Demand in Assemble-to-Order Supply Chains; Quantitative Risk Assessment in Supply Chains; A Practical Multi-Echelon Inventory Model with Semiconductor Application; Supplier Managed Inventory for Custom Items with Long Lead Times; Decentralized Supply Chain Formation; A Cooperative Game Approach to Procurement Network Formation; Flexible SC Contracts with Options; Build-to-Order Meets Global Sourcing for the Auto Industry; Practical Modeling in Automotive Production; Discrete Event Simulation Models; Diagnosing and Tuning a Statistical Forecasting System; Enterprise-Wide SC Planning in Semiconductor and Package Operations; Production Planning in Plastics; SC Execution Using Predictive Control; Production Scheduling in The Pharmaceutical Industry; Computerized Scheduling for Continuous Casting in Steelmaking; and Multi-Model Production Planning and Scheduling in an Industrial Environment.
The factory scheduling problem, that of allocating machines to competing jobs in manufacturing facilities to optimize or at least improve system performance, is encountered in many different manufacturing environments. Given the competitive pressures faced by many companies in today's rapidly changing global markets, improved factory scheduling should contribute to a flrm's success. However, even though an extensive body of research on scheduling models has been in existence for at least the last three decades, most of the techniques currently in use in industry are relatively simplistic, and have not made use of this body of knowledge. In this book we describe a systematic, long-term research effort aimed at developing effective scheduling algorithms for complex manufacturing facilities. We focus on a speciflc industrial context, that of semiconductor manufacturing, and try to combine knowledge of the physical production system with the methods and results of scheduling research to develop effective approximate solution procedures for these problems. The class of methods we suggest, decomposition methods, constitute a broad family of heuristic approaches to large, NP-hard scheduling problems which can be applied in other environments in addition to those studied in this book.
In two volumes, Planning Production and Inventories in the Extended Enterprise: A State of the Art Handbook examines production planning across the extended enterprise against a backdrop of important gaps between theory and practice. The early chapters describe the multifaceted nature of production planning problems and reveal many of the core complexities. The middle chapters describe recent research on theoretical techniques to manage these complexities. Accounts of production planning system currently in use in various industries are included in the later chapters. Throughout the two volumes there are suggestions on promising directions for future work focused on closing the gaps.
|
You may like...
Labour Relations in South Africa
Dr Hanneli Bendeman, Dr Bronwyn Dworzanowski-Venter
Paperback
Mission Impossible 6: Fallout
Tom Cruise, Henry Cavill, …
Blu-ray disc
(1)
|