![]() |
![]() |
Your cart is empty |
||
Showing 1 - 13 of 13 matches in All Departments
Density Functional Theory (DFT) has firmly established itself as the workhorse for atomic-level simulations of condensed phases, pure or composite materials and quantum chemical systems. This work offers a rigorous and detailed introduction to the foundations of this theory, up to and including such advanced topics as orbital-dependent functionals as well as both time-dependent and relativistic DFT. Given the many ramifications of contemporary DFT, the text concentrates on the self-contained presentation of the basics of the most widely used DFT variants: this implies a thorough discussion of the corresponding existence theorems and effective single particle equations, as well as of key approximations utilized in implementations. The formal results are complemented by selected quantitative results, which primarily aim at illustrating the strengths and weaknesses of particular approaches or functionals. The structure and content of this book allow a tutorial and modular self-study approach: the reader will find that all concepts of many-body theory which are indispensable for the discussion of DFT - such as the single-particle Green's function or response functions - are introduced step by step, along with the actual DFT material. The same applies to basic notions of solid state theory, such as the Fermi surface of inhomogeneous, interacting systems. In fact, even the language of second quantization is introduced systematically in an Appendix for readers without formal training in many-body theory.
The last few years have seen some remarkable advances in the understanding of atomic phenomena. It is now possible to isolate atomic systems in traps, measure in coincidence the fragments of collision processes, routinely produce, and study multicharged ions. One can look at bulk matter in such a way that the fundamental atomic character is clearly evident and work has begun to tease out the properties of anti matter. The papers in this book reflect many aspects of modem Atomic Physics. They correspond to the invited talks at a conference dedicated to the study of "New Directions in Atomic Physics," which took place in Magdalene College, Cambridge in July of 1998. The meeting was designed as a way of taking stock of what has been achieved and, it was hoped, as a means of stimulating new research in new areas, along new lines. Consequently, an effort was made to touch on as many directions as we could in the four days of the meeting. We included some talks which overviewed whole subfields, as well as quite a large number of research contributions. There is a unity to Physics and we tried to avoid any artificial division between theory and experiment. We had roughly the same number of talks from those who are primarily concerned with making measurements, and from those who spend their lives trying to develop the theory to describe the experiments."
This book is the first of a series covering the major topics that are taught in university courses in Theoretical Physics: Mechanics, Electrodynamics, Quantum Theory and Statistical Physics. After an introduction to basic concepts of mechanics more advanced topics build the major part of this book. Interspersed is a discussion of selected problems of motion. This is followed by a concise treatment of the Lagrangian and the Hamiltonian formulation of mechanics, as well as a brief excursion on chaotic motion. The last chapter deals with applications of the Lagrangian formulation to specific systems (coupled oscillators, rotating coordinate systems, rigid bodies). The level of the last sections is advanced. The text is accompanied by an extensive collection of online material, in which the possibilities of the electronic medium are fully exploited, e.g. in the form of applets, 2D- and 3D-animations. It contains: A collection of 74 problems with detailed step-by-step guidance towards the solutions, a collection of comments and additional mathematical details in support of the main text, a complete presentation of all the mathematical tools needed.
The first Nato Advanced Studies Institute entirely devoted to density functional theory was held in Portugal in September 1983. The proceedings of this School, publis hed in early 1985, is still used as a standard reference covering the basic development of the theory and applications in atomic, molecular, solid state and nuclear physics. Ho wever, astonishing progress has been achieved in the intervening years: The foundations of the theory have been extended to cover excited states and time dependent problems more fully, density functional theory of classical liquids and superconducting systems has been addressed and extensions to relativistic, that is, field theoretical systems, as well as a more thorough discussion of magnetic field problems have been presented. In addition, new functionals have been devised, for instance under the heading of ge neralised gradient expansions, and the number of applications in the traditional fields has steadily increased, in particular in chemistry. Applications in new fields, as for instance the structure of atomic clusters and the marriage of density functional theory with molecular dynamics and simulated annealing, have provided additional impetus to the field of density functional theory."
The last few years have seen some remarkable advances in the understanding of atomic phenomena. It is now possible to isolate atomic systems in traps, measure in coincidence the fragments of collision processes, routinely produce, and study multicharged ions. One can look at bulk matter in such a way that the fundamental atomic character is clearly evident and work has begun to tease out the properties of anti matter. The papers in this book reflect many aspects of modem Atomic Physics. They correspond to the invited talks at a conference dedicated to the study of "New Directions in Atomic Physics," which took place in Magdalene College, Cambridge in July of 1998. The meeting was designed as a way of taking stock of what has been achieved and, it was hoped, as a means of stimulating new research in new areas, along new lines. Consequently, an effort was made to touch on as many directions as we could in the four days of the meeting. We included some talks which overviewed whole subfields, as well as quite a large number of research contributions. There is a unity to Physics and we tried to avoid any artificial division between theory and experiment. We had roughly the same number of talks from those who are primarily concerned with making measurements, and from those who spend their lives trying to develop the theory to describe the experiments.
Density Functional Theory (DFT) has firmly established itself as the workhorse for atomic-level simulations of condensed phases, pure or composite materials and quantum chemical systems. This work offers a rigorous and detailed introduction to the foundations of this theory, up to and including such advanced topics as orbital-dependent functionals as well as both time-dependent and relativistic DFT. Given the many ramifications of contemporary DFT, the text concentrates on the self-contained presentation of the basics of the most widely used DFT variants: this implies a thorough discussion of the corresponding existence theorems and effective single particle equations, as well as of key approximations utilized in implementations. The formal results are complemented by selected quantitative results, which primarily aim at illustrating the strengths and weaknesses of particular approaches or functionals. The structure and content of this book allow a tutorial and modular self-study approach: the reader will find that all concepts of many-body theory which are indispensable for the discussion of DFT - such as the single-particle Green's function or response functions - are introduced step by step, along with the actual DFT material. The same applies to basic notions of solid state theory, such as the Fermi surface of inhomogeneous, interacting systems. In fact, even the language of second quantization is introduced systematically in an Appendix for readers without formal training in many-body theory.
This book introduces the scattering theory of nonrelativistic systems, a standard tool for interpreting collision experiments with quantum particles at energies not too high. The goal is to explore the interaction between particles and their properties. The authors cover the basics of the theory through a detailed discussion of elastic scattering using the stationary Schrödinger equation and the Lippmann-Schwinger equation. These remarks are supplemented by a consideration of the time-dependent formulation of scattering theory. Selection rules for effective cross sections due to symmetries conditioned by the structure of the interparticle forces and the scattering of spin-polarized particles are discussed. The foundations for the treatment of inelastic processes are laid and explained by application to three-body and nucleotransfer processes. In all chapters, the more technical, mathematical aspect and the more physics-oriented explanations are separated as far as possible. The explanations are well comprehensible and suitable to introduce the reader to the physics of impact processes. This book is a translation of the original German 1st edition Streutheorie in der nichtrelativistischen Quantenmechanik by Reiner M. Dreizler, Tom Kirchner & Cora S. Lüdde, published by Springer-Verlag GmbH Germany, part of Springer Nature in 2018. The translation was done with the help of artificial intelligence (machine translation by the service DeepL.com). The present version has been revised extensively with respect to technical and linguistic aspects by the authors. Springer Nature works continuously to further the development of tools for the production of books and on the related technologies to support the authors.
Der vierte Band dieser Einfuhrung in die theoretische Physik behandelt die statistische Physik und Thermodynamik. Themen sind dabei die statistische Fundierung der Thermodynamik, Grundlagen der statistischen Mechanik und Quantenmechanik, die thermodynamischen Hauptsatze und statistische Ensembles. Ein zentrales Anliegen des vorliegenden Buches ist die Diskussion der Entropie: Eine Festlegung als ein exaktes Differential in der Form von spezifischer Warme erfolgt durch eine ausfuhrliche Analyse des Carnotprozesses in den Variablen Druck und Volumen sowie den Variablen Entropie und Temperatur und deren Vergleich. Eine anschauliche Interpretation der Entropie als ein Mass fur Ordnung in thermischen Systemen ergibt sich aus einer Diskussion auf der Basis der Informationstheorie. Nach einer Betrachtung der drei idealen Gase (klassisches Gas, Fermigas und Bosegas - das Letztere einschliesslich der Bose-Einstein-Kondensate) werden die Formulierung von einfachen, quantenmechanischen Festkoerpermodellen und die Hohlraumstrahlung besprochen. Das Buch schliesst mit einer Diskussion realer Systeme (klassische und quantenmechanische Vielteilchensysteme). Die Autoren stellen in kompakter und ubersichtlicher Weise stoerungstheoretische Methoden zur Beschreibung dieser Systeme vor. Dabei wird der Schwerpunkt auf die diagrammatischen Entwicklungen gelegt: Cluster-, Kumulanten- und Virialdiagramme in klassischen Systemen und, ausgehend vom Wick'schen Theorem bei endlichen Temperaturen, Hugenholtz- und Feynmandiagramme in Quantensystemen. In diesem Kontext wird auch einen alternativen Zugang zu realen Quantensystemen beleuchtet: die thermische Dichtefunktionaltheorie.
Der Grundkurs Theoretische Physik" in vier in sich geschlossenen Banden basiert auf langjahrig, in der Praxis erprobten Vorlesungen. Die Aufbereitung der theoretisch-physikalischen Grundlagen ist hier aufs engste mit dem entsprechenden Stoff aus der Mathematik verknupft. Der erste Band erarbeitet schrittweise die Grundlagen der Physik anhand der klassischen Mechanik. Die CD-ROM enthalt einen auf die Bedurfnisse von Physik-Studierenden zugeschnittenen Mathematik-Teil sowie eine interaktive Aufgabensammlung mit Experimentiermoglichkeiten ."
Der Grundkurs Theoretische Physik in 5 in sich abgeschlossenen Banden basiert auf langjahrig erprobten Vorlesungen, in denen die Aufbereitung der theoretisch-physikalischen Grundlagen in enger Form mit dem entsprechenden Stoff aus der Mathematik verknupft wird. Interaktive, Web-basierte Aufgaben in html mit Applets helfen den Studierenden bei der Vertiefung des Stoffes: 1 Theoretische Mechanik 2 Elektrodynamik und Relativitatstheorie 3 Quantenmechanik I 4 Qunatenmechanik II 5 Thermodynamik und Statistische Physik. In diesem Band werden die erforderlichen Grundlagen der Quantenmechanik erarbeitet. Einfuhrende Themen sind: Grundexperimente zur Quantenmechanik, einfache Quantisierungsmethoden, Materiewellen. Mit der Aufstellung der Schrodingergleichung und der Einfuhrung des Operatorkalkuls ist der Weg zu dem ersten Kernstuck, der Diskussion und der Losung der Schrodingergleichung fur Einteilchensysteme, offen. Die dort diskutierten Beispiele dienen als Anschaungsmaterial fur die Erarbeitung der formalen Darstellungstheorie der Quantenmechanik. Drei Themenbereiche runden diese Einfuhrung in die Quantenmechanik ab: Storungstheorie, Spin- und Drehimpulsfragen und ein erster Blick auf Vielteilchenprobleme anhand von Coulombsystemen wie Atome, Molekule und Festkorper."
Der Grundkurs Theoretische Physik in 4 in sich abgeschlossenen BAnden basiert auf langjAhrig erprobten Vorlesungen, in denen die Aufbereitung der theoretisch-physikalischen Grundlagen in enger Form mit dem entsprechenden Stoff aus der Mathematik verknA1/4pft wird. 1 Theoretische Mechanik 2 Elektrodynamik und RelativitAtstheorie 3 Quantenmechanik 4 Thermodynamik und Statistische Physik Der zweite Band zur Elektrodynamik und RelativitAtstheorie erarbeitet schrittweise die Grundlagen der Physik, unterstA1/4tzt von einer beiliegenden CD-ROM mit einem auf die Belange der Studierenden der Physik zugeschnittenen Mathematik-Teil sowie einer interaktiven Aufgabensammlung mit Animationen.
Dieses Buch fuhrt in die Streutheorie nichtrelativistischer Systeme ein, einem Standardwerkzeug zur Interpretation von Kollisionsexperimenten mit Quantenteilchen bei nicht zu hohen Energien. Das Ziel ist die Erforschung der Wechselwirkung zwischen den Teilchen und deren Eigenschaften. Die Autoren behandeln die Grundlagen der Theorie durch eine ausfuhrliche Diskussion der elastischen Streuung anhand der stationaren Schroedingergleichung und der Lippmann-Schwinger Gleichung. Erganzt werden diese Ausfuhrungen durch die Betrachtung der zeitabhangigen Formulierung der Streutheorie. Auswahlregeln fur die Wirkungsquerschnitte aufgrund von Symmetrien bedingt durch die Struktur der Krafte zwischen den Teilchen und die Streuung von spinpolarisierten Teilchen werden besprochen. Die Grundlagen fur die Behandlung von inelastischen Prozessen werden gelegt und durch Anwendung auf Dreikoerper- und Nukleotransferprozesse erlautert. In allen Kapiteln werden die mehr technischen, mathematischen Aspekt und die mehr physikorientierten Erlauterungen soweit moeglich getrennt. Die Ausfuhrungen sind gut nachvollziehbar und geeignet, den Leser in die Physik der Stossprozesse einzufuhren.
|
![]() ![]() You may like...
|