![]() |
![]() |
Your cart is empty |
||
Showing 1 - 4 of 4 matches in All Departments
Probabilistic Modelling in Bioinformatics and Medical Informatics has been written for researchers and students in statistics, machine learning, and the biological sciences. The first part of this book provides a self-contained introduction to the methodology of Bayesian networks. The following parts demonstrate how these methods are applied in bioinformatics and medical informatics. All three fields - the methodology of probabilistic modeling, bioinformatics, and medical informatics - are evolving very quickly. The text should therefore be seen as an introduction, offering both elementary tutorials as well as more advanced applications and case studies.
Probabilistic Modelling in Bioinformatics and Medical Informatics has been written for researchers and students in statistics, machine learning, and the biological sciences. The first part of this book provides a self-contained introduction to the methodology of Bayesian networks. The following parts demonstrate how these methods are applied in bioinformatics and medical informatics. All three fields - the methodology of probabilistic modeling, bioinformatics, and medical informatics - are evolving very quickly. The text should therefore be seen as an introduction, offering both elementary tutorials as well as more advanced applications and case studies.
Artificial neural networks provides a powerful tool to help doctors analyze, model, and make sense of complex clinical data across a broad range of medical applications. Their potential in clinical medicine is reflected in the diversity of topics covered in this cutting-edge volume. In addition to looking at new and forthcoming applications the book looks forward to exciting future prospects on the horizon. The volume also examines ethical and legal concerns about the use of "black-box" systems as decision aids in medicine. This eclectic collection of chapters provides an exciting overview of current and future prospects for harnessing the power of artificial neural networks in the investigation and treatment of disease.
Artificial neural networks provide a powerful tool to help doctors analyse, model and make sense of complex clinical data across a broad range of medical applications. Their potential in clinical medicine is reflected in the diversity of topics covered in this volume. In addition to looking at applications the book looks forward to exciting future prospects. A section on theory looks at approaches to validate and refine the results generated by artificial neural networks. The volume also recognizes that concerns exist about the use of 'black-box' systems as decision aids in medicine, and the final chapter considers the ethical and legal conundrums arising out of their use for diagnostic or treatment decisions. Taken together, this eclectic collection of chapters provides an exciting overview of harnessing the power of artificial neural networks in the investigation and treatment of disease.
|
![]() ![]() You may like...
Control of Complex Systems
Karl J Astroem, Pedro Albertos, …
Hardcover
R4,639
Discovery Miles 46 390
Annual Register of the United States…
United States Naval Academy
Paperback
R433
Discovery Miles 4 330
History of Easthampton - Its Settlement…
Payson Williston Lyman
Paperback
R488
Discovery Miles 4 880
|