Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 10 of 10 matches in All Departments
Biopotential Readout Circuits for Portable Acquisition Systems describes one of the main building blocks of such miniaturized biomedical signal acquisition systems. The focus of this book is on the implementation of low-power and high-performance integrated circuit building blocks that can be used to extract biopotential signals from conventional biopotential electrodes. New instrumentation amplifier architectures are introduced and their design is described in detail. These amplifiers are used to implement complete acquisition demonstrator systems that are a stepping stone towards practical miniaturized and low-power systems.
Omnidirectional Inductive Powering for Biomedical Implants investigates the feasibility of inductive powering for capsule endoscopy and freely moving systems in general. The main challenge is the random position and orientation of the power receiving system with respect to the emitting magnetic field. Where classic inductive powering assumes a predictable or fixed alignment of the respective coils, the remote system is now free to adopt just any orientation while still maintaining full power capabilities. Before elaborating on different approaches towards omnidirectional powering, the design and optimisation of a general inductive power link is discussed in all its aspects. Special attention is paid to the interaction of the inductive power link with the patient 's body. Putting theory into practice, the implementation of an inductive power link for a capsule endoscope is included in a separate chapter.
This book describes ultra low power capacitive sensor interfaces, and presents the realization of a very low power generic sensor interface chip that is adaptable to a broad range of capacitive sensors. The book opens by reviewing important design aspects for autonomous sensor systems, discusses different building blocks, and presents the modular architecture for the generic sensor interface chip. Finally, the generic sensor interface chip is shown in state-of-the-art applications.
Inductive powering has been a reliable and simple method for many years to wirelessly power devices over relatively short distances, from a few centimetres to a few feet. Examples are found in biomedical applications, such as cochlear implants; in RFID, such as smart cards for building access control; and in consumer devices, such as electrical toothbrushes. Device sizes shrunk considerably the past decades, demanding accurate design tools to obtain reliable link operation in demanding environments. With smaller coil sizes, the link efficiency drops dramatically to a point where the commonly used calculation methods become invalid. Inductive Powering: Basic Theory and Application to Biomedical Systems lists all design equations and topology alternatives to successfully build an inductive power and data link for your specific application. It also contains practical guidelines to expand the external driver with a servomechanism that automatically tunes itself to varying coupling and load conditions.
Design of Wireless Autonomous Dataloggers IC's reveals the state of the art in the design of complex dataloggers, with a special focus on low power consumption. The emphasis is on autonomous dataloggers for stand-alone applications with remote reprogrammability. The book starts with a comprehensive introduction on the most important design aspects and trade-offs for miniaturized low-power telemetric dataloggers. After the general introduction follows an in-depth case study of an autonomous CMOS datalogger IC for the registration of in vivo loads on oral implants. After tackling the design of the datalogger on the system level, the design of the different building blocks is elaborated in detail, with emphasis on low power. A clear overview of the operation, the implementation, and the most important design considerations of the building blocks to achieve optimal system performance is given. Design of Wireless Autonomous Dataloggers IC's discusses the design of correlated double sampling amplifiers and sample-and-holds, binary-weighted current steering DACs, successive approximation ADCs and relaxation clock oscillators and can also be used as a manual for the design of these building blocks. Design of Wireless Autonomous Dataloggers IC's covers the complete design flow of low-power miniaturized autonomous dataloggers with a bi-directional wireless link and on-board data processing, while providing detailed insight into the most critical design issues of the different building blocks. It will allow you to design complex dataloggers faster. It is essential reading for analog design engineers and researchers in the field of miniaturized dataloggers and is also suitable as a text for an advanced course on the subject.
Design of Wireless Autonomous Dataloggers IC's reveals the state of the art in the design of complex dataloggers, with a special focus on low power consumption. The emphasis is on autonomous dataloggers for stand-alone applications with remote reprogrammability. The book starts with a comprehensive introduction on the most important design aspects and trade-offs for miniaturized low-power telemetric dataloggers. After the general introduction follows an in-depth case study of an autonomous CMOS datalogger IC for the registration of in vivo loads on oral implants. After tackling the design of the datalogger on the system level, the design of the different building blocks is elaborated in detail, with emphasis on low power. A clear overview of the operation, the implementation, and the most important design considerations of the building blocks to achieve optimal system performance is given. Design of Wireless Autonomous Dataloggers IC's discusses the design of correlated double sampling amplifiers and sample-and-holds, binary-weighted current steering DACs, successive approximation ADCs and relaxation clock oscillators and can also be used as a manual for the design of these building blocks. Design of Wireless Autonomous Dataloggers IC's covers the complete design flow of low-power miniaturized autonomous dataloggers with a bi-directional wireless link and on-board data processing, while providing detailed insight into the most critical design issues of the different building blocks. It will allow you to design complex dataloggers faster. It is essential reading for analog design engineers and researchers in the field of miniaturized dataloggers and is also suitable as a text for an advanced course on the subject.
This book describes ultra low power capacitive sensor interfaces, and presents the realization of a very low power generic sensor interface chip that is adaptable to a broad range of capacitive sensors. The book opens by reviewing important design aspects for autonomous sensor systems, discusses different building blocks, and presents the modular architecture for the generic sensor interface chip. Finally, the generic sensor interface chip is shown in state-of-the-art applications.
Biopotential Readout Circuits for Portable Acquisition Systems describes one of the main building blocks of such miniaturized biomedical signal acquisition systems. The focus of this book is on the implementation of low-power and high-performance integrated circuit building blocks that can be used to extract biopotential signals from conventional biopotential electrodes. New instrumentation amplifier architectures are introduced and their design is described in detail. These amplifiers are used to implement complete acquisition demonstrator systems that are a stepping stone towards practical miniaturized and low-power systems.
Omnidirectional Inductive Powering for Biomedical Implants investigates the feasibility of inductive powering for capsule endoscopy and freely moving systems in general. The main challenge is the random position and orientation of the power receiving system with respect to the emitting magnetic field. Where classic inductive powering assumes a predictable or fixed alignment of the respective coils, the remote system is now free to adopt just any orientation while still maintaining full power capabilities. Before elaborating on different approaches towards omnidirectional powering, the design and optimisation of a general inductive power link is discussed in all its aspects. Special attention is paid to the interaction of the inductive power link with the patient 's body. Putting theory into practice, the implementation of an inductive power link for a capsule endoscope is included in a separate chapter.
Inductive powering has been a reliable and simple method for many years to wirelessly power devices over relatively short distances, from a few centimetres to a few feet. Examples are found in biomedical applications, such as cochlear implants; in RFID, such as smart cards for building access control; and in consumer devices, such as electrical toothbrushes. Device sizes shrunk considerably the past decades, demanding accurate design tools to obtain reliable link operation in demanding environments. With smaller coil sizes, the link efficiency drops dramatically to a point where the commonly used calculation methods become invalid. Inductive Powering: Basic Theory and Application to Biomedical Systems lists all design equations and topology alternatives to successfully build an inductive power and data link for your specific application. It also contains practical guidelines to expand the external driver with a servomechanism that automatically tunes itself to varying coupling and load conditions.
|
You may like...
Labour Relations in South Africa
Dr Hanneli Bendeman, Dr Bronwyn Dworzanowski-Venter
Paperback
Discovering Daniel - Finding Our Hope In…
Amir Tsarfati, Rick Yohn
Paperback
|