![]() |
![]() |
Your cart is empty |
||
Showing 1 - 7 of 7 matches in All Departments
This book is intended for senior undergraduate and graduate students as well as practicing engineers who are involved in design and analysis of radio frequency (RF) circuits. Fully-solved, tutorial-like examples are used to put into practice major topics and to understand the underlying principles of the main sub-circuits required to design an RF transceiver and the whole communication system. Starting with review of principles in electromagnetic (EM) transmission and signal propagation, through detailed practical analysis of RF amplifier, mixer, modulator, demodulator, and oscillator circuit topologies, as well as basics of the system communication theory, this book systematically covers most relevant aspects in a way that is suitable for a single semester university level course. Readers will benefit from the author's sharp focus on radio receiver design, demonstrated through hundreds of fully-solved, realistic examples, as opposed to texts that cover many aspects of electronics and electromagnetic without making the required connection to wireless communication circuit design. Offers readers a complete, self-sufficient tutorial style textbook; Includes all relevant topics required to study and design an RF receiver in a consistent, coherent way with appropriate depth for a one-semester course; Uses hundreds of fully-solved, realistic examples of radio design technology to demonstrate concepts; Explains necessary physical/mathematical concepts and their interrelationship.
This book is intended for senior undergraduate and graduate students as well as practicing engineers who are involved in design and analysis of radio frequency (RF) circuits. Detailed tutorials are included on all major topics required to understand fundamental principles behind both the main sub-circuits required to design an RF transceiver and the whole communication system. Starting with review of fundamental principles in electromagnetic (EM) transmission and signal propagation, through detailed practical analysis of RF amplifier, mixer, modulator, demodulator, and oscillator circuit topologies, all the way to the basic system communication theory behind the RF transceiver operation, this book systematically covers all relevant aspects in a way that is suitable for a single semester university level course. Offers readers a complete, self-sufficient tutorial style textbook; Includes all relevant topics required to study and design an RF receiver in a consistent, coherent way with appropriate depth for a one-semester course; The labs and the book chapters are synchronized throughout a 13-week semester so that the students first study each sub-circuit and the related theory in class, practice problems, work out design details and then build and test the sub-circuit in the lab, before moving onto the next chapter; Includes detailed derivations of all key equations related to new concepts.
This textbook is a complete, self-sufficient, self-study/tutorial-type source of mathematical problems. It serves as a primary source for practicing and developing mathematical skills and techniques that will be essential in future studies and engineering practice. Rigor and mathematical formalism is drastically reduced, while the main focus is on developing practical skills and techniques for solving mathematical problems, given in forms typically found in engineering and science. These practical techniques are split into three separate books:  the topics of algebra, complex algebra, and linear algebra (Vol. I), calculus of single and multiple argument functions (Vol. II), and continues and discrete Convolution and Fourier integrals/sums of typical functions used in signal processing, in addition to Laplace transform examples  (Vol. III).
This book is intended for senior undergraduate and graduate students as well as practicing engineers who are involved in design and analysis of radio frequency (RF) circuits. Fully-solved, tutorial-like examples are used to put into practice all major topics required to understand the principles underlying the main sub-circuits required to design an RF transceiver and the whole communication system. Starting with review of principles in electromagnetic (EM) transmission and signal propagation, through detailed practical analysis of RF amplifier, mixer, modulator, demodulator, and oscillator circuit topologies, all the way to the system communication theory behind the RF transceiver operation, this book systematically covers all relevant aspects in a way that is suitable for a single semester university level course. Readers will benefit from the author's sharp focus on radio receiver design, demonstrated through hundreds of fully-solved, realistic examples, as opposed to texts that cover many aspects of electronics and electromagnetic without making the required connection to wireless communication circuit design.
This book is intended for senior undergraduate and graduate students as well as practicing engineers who are involved in design and analysis of radio frequency (RF) circuits. Detailed tutorials are included on all major topics required to understand fundamental principles behind both the main sub-circuits required to design an RF transceiver and the whole communication system. Starting with review of fundamental principles in electromagnetic (EM) transmission and signal propagation, through detailed practical analysis of RF amplifier, mixer, modulator, demodulator, and oscillator circuit topologies, all the way to the system communication theory behind the RF transceiver operation, this book systematically covers all relevant aspects in a way that is suitable for a single semester university level course.
This book is intended for senior undergraduate and graduate students as well as practicing engineers who are involved in design and analysis of radio frequency (RF) circuits. Fully-solved, tutorial-like examples are used to put into practice major topics and to understand the underlying principles of the main sub-circuits required to design an RF transceiver and the whole communication system. Starting with review of principles in electromagnetic (EM) transmission and signal propagation, through detailed practical analysis of RF amplifier, mixer, modulator, demodulator, and oscillator circuit topologies, as well as basics of the system communication theory, this book systematically covers most relevant aspects in a way that is suitable for a single semester university level course. Readers will benefit from the author's sharp focus on radio receiver design, demonstrated through hundreds of fully-solved, realistic examples, as opposed to texts that cover many aspects of electronics and electromagnetic without making the required connection to wireless communication circuit design. Offers readers a complete, self-sufficient tutorial style textbook; Includes all relevant topics required to study and design an RF receiver in a consistent, coherent way with appropriate depth for a one-semester course; Uses hundreds of fully-solved, realistic examples of radio design technology to demonstrate concepts; Explains necessary physical/mathematical concepts and their interrelationship.
This book is intended for senior undergraduate and graduate students as well as practicing engineers who are involved in design and analysis of radio frequency (RF) circuits. Detailed tutorials are included on all major topics required to understand fundamental principles behind both the main sub-circuits required to design an RF transceiver and the whole communication system. Starting with review of fundamental principles in electromagnetic (EM) transmission and signal propagation, through detailed practical analysis of RF amplifier, mixer, modulator, demodulator, and oscillator circuit topologies, all the way to the basic system communication theory behind the RF transceiver operation, this book systematically covers all relevant aspects in a way that is suitable for a single semester university level course. Offers readers a complete, self-sufficient tutorial style textbook; Includes all relevant topics required to study and design an RF receiver in a consistent, coherent way with appropriate depth for a one-semester course; The labs and the book chapters are synchronized throughout a 13-week semester so that the students first study each sub-circuit and the related theory in class, practice problems, work out design details and then build and test the sub-circuit in the lab, before moving onto the next chapter; Includes detailed derivations of all key equations related to new concepts.
|
![]() ![]() You may like...
The Women's Khutbah Book - Contemporary…
Sa'diyya Shaikh, Fatima Seedat
Paperback
Poems from the Divan of Hafiz - Easy to…
Gertrude Lowthian Bell
Hardcover
R614
Discovery Miles 6 140
|