![]() |
![]() |
Your cart is empty |
||
Showing 1 - 4 of 4 matches in All Departments
This textbook explores a selection of topics in complex analysis. From core material in the mainstream of complex analysis itself, to tools that are widely used in other areas of mathematics, this versatile compilation offers a selection of many different paths. Readers interested in complex analysis will appreciate the unique combination of topics and connections collected in this book. Beginning with a review of the main tools of complex analysis, harmonic analysis, and functional analysis, the authors go on to present multiple different, self-contained avenues to proceed. Chapters on linear fractional transformations, harmonic functions, and elliptic functions offer pathways to hyperbolic geometry, automorphic functions, and an intuitive introduction to the Schwarzian derivative. The gamma, beta, and zeta functions lead into L-functions, while a chapter on entire functions opens pathways to the Riemann hypothesis and Nevanlinna theory. Cauchy transforms give rise to Hilbert and Fourier transforms, with an emphasis on the connection to complex analysis. Valuable additional topics include Riemann surfaces, steepest descent, tauberian theorems, and the Wiener-Hopf method. Showcasing an array of accessible excursions, Explorations in Complex Functions is an ideal companion for graduate students and researchers in analysis and number theory. Instructors will appreciate the many options for constructing a second course in complex analysis that builds on a first course prerequisite; exercises complement the results throughout.
Stephen smale is one of the great mathematicians of the 20th century. His work encompasses a wide variety of subjects: differential topology, dynamical systems, calculus of variations, theory of computation, mechanics and mathematical economy. In all these subjects he has left the imprint of collection of fundamental results. He has obtain several distinctions, including the Fields Medal, he Veblen Prize, the Chauvenet Prize, the von Neumann Award and the National Medal of Science. This invaluable book contains the collected papers of Stephen Smale. These are divided into eight groups: topology; calculus of variations; dynamics; mechanics; economics; biology, electric circuits and mathematical programming; theory of computation; miscellaneous. In addition, each group contains one or two articles by world leaders on its subject which comment on the influence of Smale's work, and another article by Smale with his one retrospective views.
More Explorations in Complex Functions is something of a sequel to GTM 287, Explorations in Complex Functions. Both texts introduce a variety of topics, from core material in the mainstream of complex analysis to tools that are widely used in other areas of mathematics and applications, but there is minimal overlap between the two books. The intended readership is the same, namely graduate students and researchers in complex analysis, independent readers, seminar attendees, or instructors for a second course in complex analysis. Instructors will appreciate the many options for constructing a second course that builds on a standard first course in complex analysis. Exercises complement the results throughout. There is more material in this present text than one could expect to cover in a year’s course in complex analysis. A mapping of dependence relations among chapters enables instructors and independent readers a choice of pathway to reading the text. Chapters 2, 4, 5, 7, and 8 contain the function theory background for some stochastic equations of current interest, such as SLE. The text begins with two introductory chapters to be used as a resource.  Chapters 3 and 4 are stand-alone introductions to complex dynamics and to univalent function theory, including deBrange’s theorem, respectively.  Chapters 5—7 may be treated as a unit that leads from harmonic functions to covering surfaces to the uniformization theorem and Fuchsian groups.  Chapter 8 is a stand-alone treatment of quasiconformal mapping that paves the way for Chapter 9, an introduction to Teichmüller theory. The final chapters, 10–14, are largely stand-alone introductions to topics of both theoretical and applied interest: the Bergman kernel, theta functions and Jacobi inversion, Padé approximants and continued fractions, the Riemann—Hilbert problem and integral equations, and Darboux’s method for computing asymptotics.
This invaluable book contains the collected papers of Stephen Smale. These are divided into eight groups: topology; calculus of variations; dynamics; mechanics; economics; biology, electric circuits and mathematical programming; theory of computation; miscellaneous. In addition, each group contains one or two articles by world leaders on its subject which comment on the influence of Smale's work, and another article by Smale with his own retrospective views.
|
![]() ![]() You may like...
Handbook of Research on Advanced…
Ahmed J. Obaid, Ghassan H Abdul-Majeed, …
Hardcover
R8,343
Discovery Miles 83 430
Benefits Realization Management…
Carlos Eduardo Martins Serra
Paperback
R1,502
Discovery Miles 15 020
Human Insecurities in Southeast Asia
Paul J. Carnegie, Victor T. King, …
Hardcover
R4,631
Discovery Miles 46 310
|