Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 6 of 6 matches in All Departments
The interpretation of quantum mechanics has been controversial since the introduction of quantum theory in the 1920s. Although the Copenhagen interpretation is commonly accepted, its usual formulation suffers from some serious drawbacks. Based mainly on Bohr's concepts, the formulation assumes an independent and essential validity of classical concepts running in parallel with quantum ones, and leaves open the possibility of their ultimate conflict. In this book, Roland Omnes examines a number of recent advances, which, combined, lead to a consistent revision of the Copenhagen interpretation. His aim is to show how this interpretation can fit all present experiments, to weed out unnecessary or questionable assumptions, and to assess the domain of validity where the older statements apply. Drawing on the new contributions, "The Interpretation of Quantum Mechanics" offers a complete and self-contained treatment of interpretation (in nonrelativistic physics) in a manner accessible to both physicists and students. Although some "hard" results are included, the concepts and mathematical developments are maintained at an undergraduate level. This book enables readers to check every step, apply the techniques to new problems, and make sure that no paradox or obscurity can arise in the theory. In the conclusion, the author discusses various philosophical implications pertinent to the study of quantum mechanics."
The mysterious beauty, harmony, and consistency of mathematics once caused philosopher Hilary Putnam to term its existence a "miracle." Now, advances in the understanding of physics suggest that the foundations of mathematics are encompassed by the laws of nature, an idea that sheds new light on both mathematics and physics. The philosophical relationship between mathematics and the natural sciences is the subject of "Converging Realities," the latest work by one of the leading thinkers on the subject. Based on a simple but powerful idea, it shows that the axioms needed for the mathematics used in physics can also generate practically every field of contemporary pure mathematics. It also provides a foundation for current investigations in string theory and other areas of physics. This approach to the nature of mathematics is not really new, but it became overshadowed by formalism near the end of nineteenth century. The debate turned eventually into an exclusive dialogue between mathematicians and philosophers, as if physics and nature did not exist. This unsatisfactory situation was enforced by the uncertain standing of physical reality in quantum mechanics. The recent advances in the interpretation of quantum mechanics (as described in "Quantum Philosophy," also by Omnes) have now reconciled the foundations of physics with objectivity and common sense. In Converging Realities, Roland Omnes is among the first scholars to consider the connection of natural laws with mathematics."
Here Roland Omnes offers a clear, up-to-date guide to the conceptual framework of quantum mechanics. In an area that has provoked much philosophical debate, Omnes has achieved high recognition for his "Interpretation of Quantum Mechanics" (Princeton 1994), a book for specialists. Now the author has transformed his own theory into a short and readable text that enables beginning students and experienced physicists, mathematicians, and philosophers to form a comprehensive picture of the field while learning about the most recent advances. This new book presents a more streamlined version of the Copenhagen interpretation, showing its logical consistency and completeness. The problem of measurement is a major area of inquiry, with the author surveying its history from Planck to Heisenberg before describing the consistent-histories interpretation. He draws upon the most recent research on the decoherence effect (related to the modern resolution of the famous Schrodinger's cat problem) and an exact formulation of the correspondence between quantum and particle physics (implying a derivation of classical determinism from quantum probabilism). Interpretation is organized with the help of a universal and sound language using so-called consistent histories. As a language and a method, it can now be shown to be free of ambiguity and it makes interpretation much clearer and closer to common sense."
In this magisterial work, Roland Omnes takes us from the academies of ancient Greece to the laboratories of modern science as he seeks to do no less than rebuild the foundations of the philosophy of knowledge. One of the world's leading quantum physicists, Omnes reviews the history and recent development of mathematics, logic, and the physical sciences to show that current work in quantum theory offers new answers to questions that have puzzled philosophers for centuries: Is the world ultimately intelligible? Are all events caused? Do objects have definitive locations? Omnes addresses these profound questions with vigorous arguments and clear, colorful writing, aiming not just to advance scholarship but to enlighten readers with no background in science or philosophy. The book opens with an insightful and sweeping account of the main developments in science and the philosophy of knowledge from the pre-Socratic era to the nineteenth century. Omnes then traces the emergence in modern thought of a fracture between our intuitive, commonsense views of the world and the abstract and--for most people--incomprehensible world portrayed by advanced physics, math, and logic. He argues that the fracture appeared because the insights of Einstein and Bohr, the logical advances of Frege, Russell, and Godel, and the necessary mathematics of infinity of Cantor and Hilbert cannot be fully expressed by words or images only. Quantum mechanics played an important role in this development, as it seemed to undermine intuitive notions of intelligibility, locality, and causality. However, Omnes argues that common sense and quantum mechanics are not as incompatible as many have thought. In fact, he makes the provocative argument that the "consistent-histories" approach to quantum mechanics, developed over the past fifteen years, places common sense (slightly reappraised and circumscribed) on a firm scientific and philosophical footing for the first time. In doing so, it provides what philosophers have sought through the ages: a sure foundation for human knowledge. "Quantum Philosophy" is a profound work of contemporary science and philosophy and an eloquent history of the long struggle to understand the nature of the world and of knowledge itself."
|
You may like...
|