Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 6 of 6 matches in All Departments
In this book, a risk management approach starts off by discussing important issues related to managing supply chain disruption risks from various perspectives during VUCA times. It explores the essence and principles relating to managing these risks and provides the framework and multi-goal model groups for managing such unknown-unknown risks and subsequent disruptions at a global scale. The book explores and presents the latest developments across different emerging topics in supply chain risk and disruption management. These include (i) an overview of supply chain risk, and disruption management tools, techniques, and approaches, (ii) a review on uncertainty modeling for decentralized supply chain systems, (iii) supply chain deep uncertainties and risks - the 'new normal', (iv) emergent technologies for supply chain risk and disruption management, (v) supply chain resilience strategies for times of unprecedented uncertainty, (vi) the role of blockchain in developing supply chain resilience against disruptions, (vii) a qualitative study on supply chain risk management adopting blockchain technology, (viii) assessment of risks and risk management for agriculture supply chain, (ix) resilience of agri-food supply chains: Australian developments after a decade of supply and demand shocks, (x) prioritization of risks in the pharmaceutical supply chains (xi) improving medical supply chain disruption management with the blockchain technology, and (xii) impacts of resilience practices on supply chain sustainability. The book contributes significantly to the growing body of knowledge concerning the theory and practice of managing supply chain risks and disruptions in strategic management, operations and supply chain, and sustainability literature. It presents contemporary, innovative and latest developments in applying smart management tools, techniques and approaches for managing supply chain risk and disruption and future-proofing supply chains to become agile, resilient and sustainable.
Healthcare costs around the globe are on the rise, creating a strong need for new ways of assisting the requirements of the healthcare system. Besides applications in other areas, neural networks have naturally found many promising applications in the health and medicine areas. ""Neural Networks in Healthcare: Potential and Challenges"" presents interesting and innovative developments from leading experts and scientists working in health, biomedicine, biomedical engineering, and computing areas. This book covers many important and state-of-the-art applications in the areas of medicine and healthcare, including: cardiology, electromyography, electroencephalography, gait and human movement, therapeutic drug monitoring for patient care, sleep apnea, and computational fluid dynamics areas. ""Neural Networks in Healthcare: Potential and Challenges"" is a useful source of information for researchers, professionals, lecturers, and students from a wide range of disciplines. Readers of this book will be able to use the ideas for further research efforts in this very important and highly multidisciplinary area.
This book consists of eight chapters, authored by distinguished researchers and practitioners, that highlight the state of the art and recent trends in addressing the project portfolio selection and scheduling problem (PPSSP) across a variety of domains, particularly defense, social programs, supply chains, and finance. Many organizations face the challenge of selecting and scheduling a subset of available projects subject to various resource and operational constraints. In the simplest scenario, the primary objective for an organization is to maximize the value added through funding and implementing a portfolio of projects, subject to the available budget. However, there are other major difficulties that are often associated with this problem such as qualitative project benefits, multiple conflicting objectives, complex project interdependencies, workforce and manufacturing constraints, and deep uncertainty regarding project costs, benefits, and completion times. It is well known that the PPSSP is an NP-hard problem and, thus, there is no known polynomial-time algorithm for this problem. Despite the complexity associated with solving the PPSSP, many traditional approaches to this problem make use of exact solvers. While exact solvers provide definitive optimal solutions, they quickly become prohibitively expensive in terms of computation time when the problem size is increased. In contrast, evolutionary and memetic computing afford the capability for autonomous heuristic approaches and expert knowledge to be combined and thereby provide an efficient means for high-quality approximation solutions to be attained. As such, these approaches can provide near real-time decision support information for portfolio design that can be used to augment and improve existing human-centric strategic decision-making processes. This edited book provides the reader with a broad overview of the PPSSP, its associated challenges, and approaches to addressing the problem using evolutionary and memetic computing.
Although a useful and important tool, the potential of mathematical modelling for decision making is often neglected. Considered an art by many and weird science by some, modelling is not as widely appreciated in problem solving and decision making as perhaps it should be. And although many operations research, management science, and optimization books touch on modelling techniques, the short shrift they usually get in coverage is reflected in their minimal application to problems in the real world. Illustrating the important influence of modelling on the decision making process, Optimization Modelling: A Practical Approach helps you come to grips with a wide range of modelling techniques. Highlighting the modelling aspects of optimization problems, the authors present the techniques in a clear and straightforward manner, illustrated by examples. They provide and analyze the formulation and modelling of a number of well-known theoretical and practical problems and touch on solution approaches. The book demonstrates the use of optimization packages through the solution of various mathematical models and provides an interpretation of some of those solutions. It presents the practical aspects and difficulties of problem solving and solution implementation and studies a number of practical problems. The book also discusses the use of available software packages in solving optimization models without going into difficult mathematical details and complex solution methodologies. The emphasis on modelling techniques rather than solution algorithms sets this book apart. It is a single source for a wide range of methods, classic theoretical and practical problems, data collection and input preparation, the use of different optimization software, and practical issues of modelling, model solving, and implementation. The authors draw directly from their experience to provide lessons learned when applying modelling techniques to practical problem solving and implementation difficulties.
This book consists of eight chapters, authored by distinguished researchers and practitioners, that highlight the state of the art and recent trends in addressing the project portfolio selection and scheduling problem (PPSSP) across a variety of domains, particularly defense, social programs, supply chains, and finance. Many organizations face the challenge of selecting and scheduling a subset of available projects subject to various resource and operational constraints. In the simplest scenario, the primary objective for an organization is to maximize the value added through funding and implementing a portfolio of projects, subject to the available budget. However, there are other major difficulties that are often associated with this problem such as qualitative project benefits, multiple conflicting objectives, complex project interdependencies, workforce and manufacturing constraints, and deep uncertainty regarding project costs, benefits, and completion times. It is well known that the PPSSP is an NP-hard problem and, thus, there is no known polynomial-time algorithm for this problem. Despite the complexity associated with solving the PPSSP, many traditional approaches to this problem make use of exact solvers. While exact solvers provide definitive optimal solutions, they quickly become prohibitively expensive in terms of computation time when the problem size is increased. In contrast, evolutionary and memetic computing afford the capability for autonomous heuristic approaches and expert knowledge to be combined and thereby provide an efficient means for high-quality approximation solutions to be attained. As such, these approaches can provide near real-time decision support information for portfolio design that can be used to augment and improve existing human-centric strategic decision-making processes. This edited book provides the reader with a broad overview of the PPSSP, its associated challenges, and approaches to addressing the problem using evolutionary and memetic computing.
With the large amount of data stored by many organizations, capitalists have observed that this information is an intangible asset. Unfortunately, handling large databases is a very complex process and traditional learning techniques are expensive to use. Heuristic techniques provide much help in this arena, although little is known about heuristic techniques. Heuristic and Optimization for Knowledge Discovery addresses the foundation of this topic, as well as its practical uses, and aims to fill in the gap that exists in current literature.
|
You may like...
We Were Perfect Parents Until We Had…
Vanessa Raphaely, Karin Schimke
Paperback
How Did We Get Here? - A Girl's Guide to…
Mpoomy Ledwaba
Paperback
(2)
|