![]() |
![]() |
Your cart is empty |
||
Showing 1 - 7 of 7 matches in All Departments
This book describes methods for adaptive control of distributed-collector solar fields: plants that collect solar energy and deliver it in thermal form. Controller design methods are presented that can overcome difficulties found in these type of plants: they are distributed-parameter systems, i.e., systems with dynamics that depend on space as well as time;their dynamics is nonlinear, with a bilinear structure;there is a significant level of uncertainty in plant knowledge. Adaptive methods form the focus of the text because of the degree of uncertainty in the knowledge of plant dynamics. Parts of the text are devoted to design methods that assume only a very limited knowledge about the plant. Other parts detail methods that rely on knowledge of the dominant plant structure. These methods are more plant specific, but allow the improvement of performance. "Adaptive Control of Solar Energy Collector Systems" demonstrates the dynamics of solar fields to be rich enough to present a challenge to the control designer while, at the same time, simple enough to allow analytic work to be done, providing case studies on dynamics and nonlinear control design in a simple and revealing, but nontrivial way. The control approaches treated in this monograph can be generalized to apply to other plants modelled by hyperbolic partial differential equations, especially process plants in which transport phenomena occur, plants like dryers, steam super-heaters and even highway traffic. An important example, used repeatedly throughout the text, is a distributed-collector solar field installed at Plataforma Solar de Almeria, located in southern Spain. The control algorithms laid out in the text are illustrated with experimental results generated from this plant. Although the primary focus of this monograph is solar energy collector, the range of other systems which can benefit from the methods described will make it of interest to control engineers working in many industries as well as to academic control researchers interested in adaptive control and its applications.
This book contains a collection of innovative chapters emanating from topics raised during the 5th KES International Conference on Intelligent Decision Technologies (IDT), held during 2013 at Sesimbra, Portugal. The authors were invited to expand their original papers into a plethora of innovative chapters espousing IDT methodologies and applications. This book documents leading-edge contributions, representing advances in Knowledge-Based and Intelligent Information and Engineering System. It acknowledges that researchers recognize that society is familiar with modern Advanced Information Processing and increasingly expect richer IDT systems. Each chapter concentrates on the theory, design, development, implementation, testing or evaluation of IDT techniques or applications. Anyone that wants to work with IDT or simply process knowledge should consider reading one or more chapters and focus on their technique of choice. Most readers will benefit from reading additional chapters to access alternative technique that often represent alternative approaches. This book is suitable for anyone interested in or already working with IDT or Intelligent Decision Support Systems. It is also suitable for students and researchers seeking to learn more about modern Artificial Intelligence and Computational Intelligence techniques that support decision-making in modern computer systems.
This book offers a timely and comprehensive snapshot of research and developments in the fields of dynamic systems and control engineering. Covering a wide range of theoretical and practical issues, the contributions describes a number of different control approaches, such as PID control, adaptive control, nonlinear systems and control, intelligent monitoring and control based on fuzzy and neural systems, robust control systems, and real time control, among others. Sensors and actuators, measurement systems, renewable energy systems, aeronautic and aerospace systems as well as industrial control and automation, are also comprehensively covered. Based on the proceedings of the 15th APCA International Conference on Automatic Control and Soft Computing, held on July 6-8, 2022, in Caparica, Portugal, the book offers a timely and thoroughly survey of the latest research in the fields of dynamic systems and automatic control engineering, and a source of inspiration for researchers and professionals worldwide.
This book presents the 57 papers accepted for presentation at the Seventh KES International Conference on Intelligent Decision Technologies (KES-IDT 2015), held in Sorrento, Italy, in June 2015. The conference consists of keynote talks, oral and poster presentations, invited sessions and workshops on the applications and theory of intelligent decision systems and related areas. The conference provides an opportunity for the presentation and discussion of interesting new research results, promoting knowledge transfer and the generation of new ideas. The book will be of interest to all those whose work involves the development and application of intelligent decision systems.
This book offers a timely and comprehensive snapshot of research and developments in the fields of dynamic systems and control engineering. Covering a wide range of theoretical and practical issues, the contributions describes a number of different control approaches, such as PID control, adaptive control, nonlinear systems and control, intelligent monitoring and control based on fuzzy and neural systems, robust control systems, and real time control, among others. Sensors and actuators, measurement systems, renewable energy systems, aeronautic and aerospace systems as well as industrial control and automation, are also comprehensively covered. Based on the proceedings of the 15th APCA International Conference on Automatic Control and Soft Computing, held on July 6-8, 2022, in Caparica, Portugal, the book offers a timely and thoroughly survey of the latest research in the fields of dynamic systems and automatic control engineering, and a source of inspiration for researchers and professionals worldwide. Â
This book contains a collection of innovative chapters emanating from topics raised during the 5th KES International Conference on Intelligent Decision Technologies (IDT), held during 2013 at Sesimbra, Portugal. The authors were invited to expand their original papers into a plethora of innovative chapters espousing IDT methodologies and applications. This book documents leading-edge contributions, representing advances in Knowledge-Based and Intelligent Information and Engineering System. It acknowledges that researchers recognize that society is familiar with modern Advanced Information Processing and increasingly expect richer IDT systems. Each chapter concentrates on the theory, design, development, implementation, testing or evaluation of IDT techniques or applications. Anyone that wants to work with IDT or simply process knowledge should consider reading one or more chapters and focus on their technique of choice. Most readers will benefit from reading additional chapters to access alternative technique that often represent alternative approaches. This book is suitable for anyone interested in or already working with IDT or Intelligent Decision Support Systems. It is also suitable for students and researchers seeking to learn more about modern Artificial Intelligence and Computational Intelligence techniques that support decision-making in modern computer systems.
This book describes methods for adaptive control of distributed-collector solar fields: plants that collect solar energy and deliver it in thermal form. Controller design methods are presented that can overcome difficulties found in these type of plants: they are distributed-parameter systems, i.e., systems with dynamics that depend on space as well as time; their dynamics is nonlinear, with a bilinear structure; there is a significant level of uncertainty in plant knowledge. Adaptive methods form the focus of the text because of the degree of uncertainty in the knowledge of plant dynamics. Parts of the text are devoted to design methods that assume only a very limited knowledge about the plant. Other parts detail methods that rely on knowledge of the dominant plant structure. These methods are more plant specific, but allow the improvement of performance. Adaptive Control of Solar Energy Collector Systems demonstrates the dynamics of solar fields to be rich enough to present a challenge to the control designer while, at the same time, simple enough to allow analytic work to be done, providing case studies on dynamics and nonlinear control design in a simple and revealing, but nontrivial way. The control approaches treated in this monograph can be generalized to apply to other plants modelled by hyperbolic partial differential equations, especially process plants in which transport phenomena occur, plants like dryers, steam super-heaters and even highway traffic. An important example, used repeatedly throughout the text, is a distributed-collector solar field installed at Plataforma Solar de Almeria, located in southern Spain. The control algorithms laid out in the text are illustrated with experimental results generated from this plant. Although the primary focus of this monograph is solar energy collector, the range of other systems which can benefit from the methods described will make it of interest to control engineers working in many industries as well as to academic control researchers interested in adaptive control and its applications.
|
![]() ![]() You may like...
Atlas - The Story Of Pa Salt
Lucinda Riley, Harry Whittaker
Paperback
|