![]() |
![]() |
Your cart is empty |
||
Showing 1 - 5 of 5 matches in All Departments
The Symposium on the Current State and Prospects of Mathematics was held in Barcelona from June 13 to June 18, 1991. Seven invited Fields medalists gavetalks on the development of their respective research fields. The contents of all lectures were collected in the volume, together witha transcription of a round table discussion held during the Symposium. All papers are expository. Some parts include precise technical statements of recent results, but the greater part consists of narrative text addressed to a very broad mathematical public. CONTENTS: R. Thom: Leaving Mathematics for Philosophy.- S. Novikov: Role of Integrable Models in the Development of Mathematics.- S.-T. Yau: The Current State and Prospects of Geometry and Nonlinear Differential Equations.- A. Connes: Noncommutative Geometry.- S. Smale: Theory of Computation.- V. Jones: Knots in Mathematics and Physics.- G. Faltings: Recent Progress in Diophantine Geometry.
In der modernen Mathematik ist die sogenannte axiomatische Methode weit verbreitet; die Entdeckung der nichteuklidischen Geometrie durch Lobatschewski ist eine ihrer Bis heute hat die axiomatische Methode durch Beriihrung mit anderen Ideen Quellen. eine gewaltige Evolution erlebt und nicht nur neue Methoden, sondern auch neue Prinzi pien des physikalischen und des mathematischen Denkens hervorgebracht. Die axiom a tische Methode hat sich in zwei Etappen entwickelt. Die erste reicht von der Entdeckung durch Lobatschewski bis zu den Arbeiten Hilberts tiber die Grundlagen der Mathematik; die zweite von die sen Arbeiten Hilberts bis heute. Die zweite Etappe stellt eine Zusarn menfassung von Ideen aus der Geometrie mit der sich parallel entwickelnden Theorie dar, die uns als "symbolische" oder "mathematische" Logik bekannt ist. Als Ergebnis ent stand eine neue Disziplin, fiir welche die Bezeichnung mathematische Logik beibehalten wurde. Bevor wir auf die mathematische Logik selbst zu sprechen komrnen, betrachten wir kurz den ihr vorausgehenden Stand der axiomatischen Methode und versuchen, wenig stens in den allgemeinsten Ziigen die Griinde fiir die Entstehung dieser Methode und die vor ihr stehenden Aufgaben zu klaren. Das Wesen der axiomatischen Methode besteht in einer spezifischen Weise, mathematische Objekte und Relationen zwischen ihnen zu defi nieren. Beim Studium eines Systems von Objekten irgendwelcher Art verwenden wir be stimrnte Termini, welche die Eigenschaften dieser Objekte und die Relationen zwischen ihnen ausdrticken."
|
![]() ![]() You may like...
Nonlinear Functional Analysis and…
Jesus Garcia-Falset, Khalid Latrach
Hardcover
R5,303
Discovery Miles 53 030
Handbook of Differential Equations…
Flaviano Battelli, Michal Feckan
Hardcover
|