Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 4 of 4 matches in All Departments
Weather forecasting and climate behavioral analysis have traditionally been done using complicated physics models and accompanying atmospheric variables. However, the traditional approaches lack common tools, which can lead to incomplete information about the weather and climate conditions, in turn affecting the prediction accuracy rate. To address these problems, the advanced technological aspects through the spectrum of artificial intelligence of things (AIoT) models serve as a budding solution. Further study on artificial intelligence of things and how it can be utilized to improve weather forecasting and climatic behavioral analysis is crucial to appropriately employ the technology. Artificial Intelligence of Things for Weather Forecasting and Climatic Behavioral Analysis discusses practical applications of artificial intelligence of things for interpretation of weather patterns and how weather information can be used to make critical decisions about harvesting, aviation, etc. This book also considers artificial intelligence of things issues such as managing natural disasters that impact the lives of millions. Covering topics such as deep learning, remote sensing, and meteorological applications, this reference work is ideal for data scientists, industry professionals, researchers, academicians, scholars, practitioners, instructors, and students.
This two-volume set constitutes the refereed proceedings of the Third International Conference on Recent Trends in Image Processing and Pattern Recognition (RTIP2R) 2020, held in Aurangabad, India, in January 2020.The 78 revised full papers presented were carefully reviewed and selected from 329 submissions. The papers are organized in topical sections in the two volumes. Part I: Computer vision and applications; Data science and machine learning; Document understanding and Recognition. Part II: Healthcare informatics and medical imaging; Image analysis and recognition; Signal processing and pattern recognition; Image and signal processing in Agriculture.
This two-volume set constitutes the refereed proceedings of the Third International Conference on Recent Trends in Image Processing and Pattern Recognition (RTIP2R) 2020, held in Aurangabad, India, in January 2020.The 78 revised full papers presented were carefully reviewed and selected from 329 submissions. The papers are organized in topical sections in the two volumes. Part I: Computer vision and applications; Data science and machine learning; Document understanding and Recognition. Part II: Healthcare informatics and medical imaging; Image analysis and recognition; Signal processing and pattern recognition; Image and signal processing in Agriculture.
Weather forecasting and climate behavioral analysis have traditionally been done using complicated physics models and accompanying atmospheric variables. However, the traditional approaches lack common tools, which can lead to incomplete information about the weather and climate conditions, in turn affecting the prediction accuracy rate. To address these problems, the advanced technological aspects through the spectrum of artificial intelligence of things (AIoT) models serve as a budding solution. Further study on artificial intelligence of things and how it can be utilized to improve weather forecasting and climatic behavioral analysis is crucial to appropriately employ the technology. Artificial Intelligence of Things for Weather Forecasting and Climatic Behavioral Analysis discusses practical applications of artificial intelligence of things for interpretation of weather patterns and how weather information can be used to make critical decisions about harvesting, aviation, etc. This book also considers artificial intelligence of things issues such as managing natural disasters that impact the lives of millions. Covering topics such as deep learning, remote sensing, and meteorological applications, this reference work is ideal for data scientists, industry professionals, researchers, academicians, scholars, practitioners, instructors, and students.
|
You may like...
|