0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R2,500 - R5,000 (7)
  • R5,000 - R10,000 (7)
  • -
Status
Brand

Showing 1 - 14 of 14 matches in All Departments

Accelerated Plant Breeding, Volume 2 - Vegetable Crops (Hardcover, 1st ed. 2020): Satbir Singh Gosal, Shabir Hussain Wani Accelerated Plant Breeding, Volume 2 - Vegetable Crops (Hardcover, 1st ed. 2020)
Satbir Singh Gosal, Shabir Hussain Wani
R5,638 Discovery Miles 56 380 Ships in 12 - 19 working days

Plant improvement has shifted its focus from yield, quality and disease resistance to factors that will enhance commercial export, such as early maturity, shelf life and better processing quality. Conventional plant breeding methods aiming at the improvement of a self-pollinating crop, such as wheat, usually take 10-12 years to develop and release of the new variety. During the past 10 years, significant advances have been made and accelerated methods have been developed for precision breeding and early release of crop varieties. This edited volume summarizes concepts dealing with germplasm enhancement and development of improved varieties based on innovative methodologies that include doubled haploidy, marker assisted selection, marker assisted background selection, genetic mapping, genomic selection, high-throughput genotyping, high-throughput phenotyping, mutation breeding, reverse breeding, transgenic breeding, shuttle breeding, speed breeding, low cost high-throughput field phenotyping, etc. It is an important reference with special focus on accelerated development of improved crop varieties.

Accelerated Plant Breeding, Volume 1 - Cereal Crops (Hardcover, 1st ed. 2020): Satbir Singh Gosal, Shabir Hussain Wani Accelerated Plant Breeding, Volume 1 - Cereal Crops (Hardcover, 1st ed. 2020)
Satbir Singh Gosal, Shabir Hussain Wani
R4,429 Discovery Miles 44 290 Ships in 10 - 15 working days

Plant improvement has shifted its focus from yield, quality and disease resistance to factors that will enhance commerical export, such as early maturity, shelf life and better processing quality. Conventional plant breeding methods aiming at the improvement of a self-pollinating crop, such as wheat, usually take 10-12 years to develop and release of the new variety. During the past 10 years, significant advances have been made and accelerated methods have been developed for precision breeding and early release of crop varieties. This work summarizes concepts dealing with germplasm enhancement and development of improved varieties based on innovative methodologies that include doubled haploidy, marker assisted selection, marker assisted background selection, genetic mapping, genomic selection, high-throughput genotyping, high-throughput phenotyping, mutation breeding, reverse breeding, transgenic breeding, shuttle breeding, speed breeding, low cost high-throughput field phenotyping, etc. It is an important reference with special focus on accelerated development of improved crop varieties.

Biotechnologies of Crop Improvement, Volume 1 - Cellular Approaches (Hardcover, 1st ed. 2018): Satbir Singh Gosal, Shabir... Biotechnologies of Crop Improvement, Volume 1 - Cellular Approaches (Hardcover, 1st ed. 2018)
Satbir Singh Gosal, Shabir Hussain Wani
R5,673 Discovery Miles 56 730 Ships in 10 - 15 working days

During the past 15 years, cellular and molecular approaches have emerged as valuable adjuncts to supplement and complement conventional breeding methods for a wide variety of crop plants. Biotechnology increasingly plays a role in the creation, conservation, characterization and utilization of genetic variability for germplasm enhancement. For instance, anther/microspore culture, somaclonal variation, embryo culture and somatic hybridization are being exploited for obtaining incremental improvement in the existing cultivars. In addition, genes that confer insect- and disease-resistance, abiotic stress tolerance, herbicide tolerance and quality traits have been isolated and re-introduced into otherwise sensitive or susceptible species by a variety of transgenic techniques. Together these transformative methodologies grant access to a greater repertoire of genetic diversity as the gene(s) may come from viruses, bacteria, fungi, insects, animals, human beings, unrelated plants or even be artificially derived. Remarkable achievements have been made in the production, characterization, field evaluation and commercialization of transgenic crop varieties worldwide. Likewise, significant advances have been made towards increasing crop yields, improving nutritional quality, enabling crops to be raised under adverse conditions and developing resistance to pests and diseases for sustaining global food and nutritional security. The overarching purpose of this 3-volume work is to summarize the history of crop improvement from a technological perspective but to do so with a forward outlook on further advancement and adaptability to a changing world. Our carefully chosen "case studies of important plant crops" intend to serve a diverse spectrum of audience looking for the right tools to tackle complicated local and global issues.

Biotechnologies of Crop Improvement, Volume 2 - Transgenic Approaches (Hardcover, 1st ed. 2018): Satbir Singh Gosal, Shabir... Biotechnologies of Crop Improvement, Volume 2 - Transgenic Approaches (Hardcover, 1st ed. 2018)
Satbir Singh Gosal, Shabir Hussain Wani
R5,669 Discovery Miles 56 690 Ships in 10 - 15 working days

During the past 15 years, cellular and molecular approaches have emerged as valuable adjuncts to supplement and complement conventional breeding methods for a wide variety of crop plants. Biotechnology increasingly plays a role in the creation, conservation, characterization and utilization of genetic variability for germplasm enhancement. For instance, anther/microspore culture, somaclonal variation, embryo culture and somatic hybridization are being exploited for obtaining incremental improvement in the existing cultivars. In addition, genes that confer insect- and disease-resistance, abiotic stress tolerance, herbicide tolerance and quality traits have been isolated and re-introduced into otherwise sensitive or susceptible species by a variety of transgenic techniques. Together these transformative methodologies grant access to a greater repertoire of genetic diversity as the gene(s) may come from viruses, bacteria, fungi, insects, animals, human beings, unrelated plants or even be artificially derived. Remarkable achievements have been made in the production, characterization, field evaluation and commercialization of transgenic crop varieties worldwide. Likewise, significant advances have been made towards increasing crop yields, improving nutritional quality, enabling crops to be raised under adverse conditions and developing resistance to pests and diseases for sustaining global food and nutritional security. The overarching purpose of this 3-volume work is to summarize the history of crop improvement from a technological perspective but to do so with a forward outlook on further advancement and adaptability to a changing world. Our carefully chosen "case studies of important plant crops" intend to serve a diverse spectrum of audience looking for the right tools to tackle complicated local and global issues.

Biotechnologies of Crop Improvement, Volume 3 - Genomic Approaches (Hardcover, 1st ed. 2018): Satbir Singh Gosal, Shabir... Biotechnologies of Crop Improvement, Volume 3 - Genomic Approaches (Hardcover, 1st ed. 2018)
Satbir Singh Gosal, Shabir Hussain Wani
R4,400 Discovery Miles 44 000 Ships in 10 - 15 working days

During the past 15 years, cellular and molecular approaches have emerged as valuable adjuncts to supplement and complement conventional breeding methods for a wide variety of crop plants. Biotechnology increasingly plays a role in the creation, conservation, characterization and utilization of genetic variability for germplasm enhancement. For instance, anther/microspore culture, somaclonal variation, embryo culture and somatic hybridization are being exploited for obtaining incremental improvement in the existing cultivars. In addition, genes that confer insect- and disease-resistance, abiotic stress tolerance, herbicide tolerance and quality traits have been isolated and re-introduced into otherwise sensitive or susceptible species by a variety of transgenic techniques. Together these transformative methodologies grant access to a greater repertoire of genetic diversity as the gene(s) may come from viruses, bacteria, fungi, insects, animals, human beings, unrelated plants or even be artificially derived. Remarkable achievements have been made in the production, characterization, field evaluation and commercialization of transgenic crop varieties worldwide. Likewise, significant advances have been made towards increasing crop yields, improving nutritional quality, enabling crops to be raised under adverse conditions and developing resistance to pests and diseases for sustaining global food and nutritional security. The overarching purpose of this 3-volume work is to summarize the history of crop improvement from a technological perspective but to do so with a forward outlook on further advancement and adaptability to a changing world. Our carefully chosen "case studies of important plant crops" intend to serve a diverse spectrum of audience looking for the right tools to tackle complicated local and global issues.

Accelerated Plant Breeding, Volume 3 - Food Legumes (Hardcover, 1st ed. 2020): Satbir Singh Gosal, Shabir Hussain Wani Accelerated Plant Breeding, Volume 3 - Food Legumes (Hardcover, 1st ed. 2020)
Satbir Singh Gosal, Shabir Hussain Wani
R4,424 Discovery Miles 44 240 Ships in 10 - 15 working days

Plant improvement has shifted its focus from yield, quality and disease resistance to factors that will enhance commercial export, such as early maturity, shelf life and better processing quality. Conventional plant breeding methods aiming at the improvement of a self-pollinating crop, such as wheat, usually take 10-12 years to develop and release of the new variety. During the past 10 years, significant advances have been made and accelerated methods have been developed for precision breeding and early release of crop varieties. This work summarizes concepts dealing with germplasm enhancement and development of improved varieties based on innovative methodologies that include doubled haploidy, marker assisted selection, marker assisted background selection, genetic mapping, genomic selection, high-throughput genotyping, high-throughput phenotyping, mutation breeding, reverse breeding, transgenic breeding, shuttle breeding, speed breeding, low cost high-throughput field phenotyping, etc. It is an important reference with special focus on accelerated development of improved crop varieties.

Accelerated Plant Breeding, Volume 4 - Oil Crops (Hardcover, 1st ed. 2022): Satbir Singh Gosal, Shabir Hussain Wani Accelerated Plant Breeding, Volume 4 - Oil Crops (Hardcover, 1st ed. 2022)
Satbir Singh Gosal, Shabir Hussain Wani
R5,195 Discovery Miles 51 950 Ships in 10 - 15 working days

Plant improvement has shifted its focus from yield, quality and disease resistance to factors that will enhance commercial export, such as early maturity, shelf life and better processing quality. Conventional plant breeding methods aiming at the improvement of a self-pollinating crop usually take 10-12 years to develop and release of the new variety. During the past 10 years, significant advances have been made and accelerated methods have been developed for precision breeding and early release of crop varieties. This book focuses on the accelerated breeding technologies that have been adopted for major oil crops. It summarizes concepts dealing with germplasm enhancement and development of improved varieties based on innovative methodologies that include doubled haploidy, marker assisted selection, marker assisted background selection, genetic mapping, genomic selection, high-throughput genotyping, high-throughput phenotyping, mutation breeding, reverse breeding, transgenic breeding, shuttle breeding, speed breeding, low cost high-throughput field phenotyping, etc. This edited volume is therefore an excellent reference on accelerated development of improved crop varieties.

Accelerated Plant Breeding, Volume 3 - Food Legumes (Paperback, 1st ed. 2020): Satbir Singh Gosal, Shabir Hussain Wani Accelerated Plant Breeding, Volume 3 - Food Legumes (Paperback, 1st ed. 2020)
Satbir Singh Gosal, Shabir Hussain Wani
R4,394 Discovery Miles 43 940 Ships in 10 - 15 working days

Plant improvement has shifted its focus from yield, quality and disease resistance to factors that will enhance commercial export, such as early maturity, shelf life and better processing quality. Conventional plant breeding methods aiming at the improvement of a self-pollinating crop, such as wheat, usually take 10-12 years to develop and release of the new variety. During the past 10 years, significant advances have been made and accelerated methods have been developed for precision breeding and early release of crop varieties. This work summarizes concepts dealing with germplasm enhancement and development of improved varieties based on innovative methodologies that include doubled haploidy, marker assisted selection, marker assisted background selection, genetic mapping, genomic selection, high-throughput genotyping, high-throughput phenotyping, mutation breeding, reverse breeding, transgenic breeding, shuttle breeding, speed breeding, low cost high-throughput field phenotyping, etc. It is an important reference with special focus on accelerated development of improved crop varieties.

Accelerated Plant Breeding, Volume 2 - Vegetable Crops (Paperback, 1st ed. 2020): Satbir Singh Gosal, Shabir Hussain Wani Accelerated Plant Breeding, Volume 2 - Vegetable Crops (Paperback, 1st ed. 2020)
Satbir Singh Gosal, Shabir Hussain Wani
R5,629 Discovery Miles 56 290 Ships in 10 - 15 working days

Plant improvement has shifted its focus from yield, quality and disease resistance to factors that will enhance commercial export, such as early maturity, shelf life and better processing quality. Conventional plant breeding methods aiming at the improvement of a self-pollinating crop, such as wheat, usually take 10-12 years to develop and release of the new variety. During the past 10 years, significant advances have been made and accelerated methods have been developed for precision breeding and early release of crop varieties. This edited volume summarizes concepts dealing with germplasm enhancement and development of improved varieties based on innovative methodologies that include doubled haploidy, marker assisted selection, marker assisted background selection, genetic mapping, genomic selection, high-throughput genotyping, high-throughput phenotyping, mutation breeding, reverse breeding, transgenic breeding, shuttle breeding, speed breeding, low cost high-throughput field phenotyping, etc. It is an important reference with special focus on accelerated development of improved crop varieties.

Accelerated Plant Breeding, Volume 1 - Cereal Crops (Paperback, 1st ed. 2020): Satbir Singh Gosal, Shabir Hussain Wani Accelerated Plant Breeding, Volume 1 - Cereal Crops (Paperback, 1st ed. 2020)
Satbir Singh Gosal, Shabir Hussain Wani
R4,399 Discovery Miles 43 990 Ships in 10 - 15 working days

Plant improvement has shifted its focus from yield, quality and disease resistance to factors that will enhance commerical export, such as early maturity, shelf life and better processing quality. Conventional plant breeding methods aiming at the improvement of a self-pollinating crop, such as wheat, usually take 10-12 years to develop and release of the new variety. During the past 10 years, significant advances have been made and accelerated methods have been developed for precision breeding and early release of crop varieties. This work summarizes concepts dealing with germplasm enhancement and development of improved varieties based on innovative methodologies that include doubled haploidy, marker assisted selection, marker assisted background selection, genetic mapping, genomic selection, high-throughput genotyping, high-throughput phenotyping, mutation breeding, reverse breeding, transgenic breeding, shuttle breeding, speed breeding, low cost high-throughput field phenotyping, etc. It is an important reference with special focus on accelerated development of improved crop varieties.

Biotechnologies of Crop Improvement, Volume 2 - Transgenic Approaches (Paperback, Softcover reprint of the original 1st ed.... Biotechnologies of Crop Improvement, Volume 2 - Transgenic Approaches (Paperback, Softcover reprint of the original 1st ed. 2018)
Satbir Singh Gosal, Shabir Hussain Wani
R4,165 Discovery Miles 41 650 Ships in 10 - 15 working days

During the past 15 years, cellular and molecular approaches have emerged as valuable adjuncts to supplement and complement conventional breeding methods for a wide variety of crop plants. Biotechnology increasingly plays a role in the creation, conservation, characterization and utilization of genetic variability for germplasm enhancement. For instance, anther/microspore culture, somaclonal variation, embryo culture and somatic hybridization are being exploited for obtaining incremental improvement in the existing cultivars. In addition, genes that confer insect- and disease-resistance, abiotic stress tolerance, herbicide tolerance and quality traits have been isolated and re-introduced into otherwise sensitive or susceptible species by a variety of transgenic techniques. Together these transformative methodologies grant access to a greater repertoire of genetic diversity as the gene(s) may come from viruses, bacteria, fungi, insects, animals, human beings, unrelated plants or even be artificially derived. Remarkable achievements have been made in the production, characterization, field evaluation and commercialization of transgenic crop varieties worldwide. Likewise, significant advances have been made towards increasing crop yields, improving nutritional quality, enabling crops to be raised under adverse conditions and developing resistance to pests and diseases for sustaining global food and nutritional security. The overarching purpose of this 3-volume work is to summarize the history of crop improvement from a technological perspective but to do so with a forward outlook on further advancement and adaptability to a changing world. Our carefully chosen "case studies of important plant crops" intend to serve a diverse spectrum of audience looking for the right tools to tackle complicated local and global issues.

Biotechnologies of Crop Improvement, Volume 1 - Cellular Approaches (Paperback, Softcover reprint of the original 1st ed.... Biotechnologies of Crop Improvement, Volume 1 - Cellular Approaches (Paperback, Softcover reprint of the original 1st ed. 2018)
Satbir Singh Gosal, Shabir Hussain Wani
R5,643 Discovery Miles 56 430 Ships in 10 - 15 working days

During the past 15 years, cellular and molecular approaches have emerged as valuable adjuncts to supplement and complement conventional breeding methods for a wide variety of crop plants. Biotechnology increasingly plays a role in the creation, conservation, characterization and utilization of genetic variability for germplasm enhancement. For instance, anther/microspore culture, somaclonal variation, embryo culture and somatic hybridization are being exploited for obtaining incremental improvement in the existing cultivars. In addition, genes that confer insect- and disease-resistance, abiotic stress tolerance, herbicide tolerance and quality traits have been isolated and re-introduced into otherwise sensitive or susceptible species by a variety of transgenic techniques. Together these transformative methodologies grant access to a greater repertoire of genetic diversity as the gene(s) may come from viruses, bacteria, fungi, insects, animals, human beings, unrelated plants or even be artificially derived. Remarkable achievements have been made in the production, characterization, field evaluation and commercialization of transgenic crop varieties worldwide. Likewise, significant advances have been made towards increasing crop yields, improving nutritional quality, enabling crops to be raised under adverse conditions and developing resistance to pests and diseases for sustaining global food and nutritional security. The overarching purpose of this 3-volume work is to summarize the history of crop improvement from a technological perspective but to do so with a forward outlook on further advancement and adaptability to a changing world. Our carefully chosen "case studies of important plant crops" intend to serve a diverse spectrum of audience looking for the right tools to tackle complicated local and global issues.

Biotechnologies of Crop Improvement, Volume 3 - Genomic Approaches (Paperback, Softcover reprint of the original 1st ed. 2018):... Biotechnologies of Crop Improvement, Volume 3 - Genomic Approaches (Paperback, Softcover reprint of the original 1st ed. 2018)
Satbir Singh Gosal, Shabir Hussain Wani
R4,370 Discovery Miles 43 700 Ships in 10 - 15 working days

During the past 15 years, cellular and molecular approaches have emerged as valuable adjuncts to supplement and complement conventional breeding methods for a wide variety of crop plants. Biotechnology increasingly plays a role in the creation, conservation, characterization and utilization of genetic variability for germplasm enhancement. For instance, anther/microspore culture, somaclonal variation, embryo culture and somatic hybridization are being exploited for obtaining incremental improvement in the existing cultivars. In addition, genes that confer insect- and disease-resistance, abiotic stress tolerance, herbicide tolerance and quality traits have been isolated and re-introduced into otherwise sensitive or susceptible species by a variety of transgenic techniques. Together these transformative methodologies grant access to a greater repertoire of genetic diversity as the gene(s) may come from viruses, bacteria, fungi, insects, animals, human beings, unrelated plants or even be artificially derived. Remarkable achievements have been made in the production, characterization, field evaluation and commercialization of transgenic crop varieties worldwide. Likewise, significant advances have been made towards increasing crop yields, improving nutritional quality, enabling crops to be raised under adverse conditions and developing resistance to pests and diseases for sustaining global food and nutritional security. The overarching purpose of this 3-volume work is to summarize the history of crop improvement from a technological perspective but to do so with a forward outlook on further advancement and adaptability to a changing world. Our carefully chosen "case studies of important plant crops" intend to serve a diverse spectrum of audience looking for the right tools to tackle complicated local and global issues.

Accelerated Plant Breeding, Volume 4 - Oil Crops (Paperback, 1st ed. 2022): Satbir Singh Gosal, Shabir Hussain Wani Accelerated Plant Breeding, Volume 4 - Oil Crops (Paperback, 1st ed. 2022)
Satbir Singh Gosal, Shabir Hussain Wani
R5,145 Discovery Miles 51 450 Ships in 10 - 15 working days

Plant improvement has shifted its focus from yield, quality and disease resistance to factors that will enhance commercial export, such as early maturity, shelf life and better processing quality. Conventional plant breeding methods aiming at the improvement of a self-pollinating crop usually take 10-12 years to develop and release of the new variety. During the past 10 years, significant advances have been made and accelerated methods have been developed for precision breeding and early release of crop varieties. This book focuses on the accelerated breeding technologies that have been adopted for major oil crops. It summarizes concepts dealing with germplasm enhancement and development of improved varieties based on innovative methodologies that include doubled haploidy, marker assisted selection, marker assisted background selection, genetic mapping, genomic selection, high-throughput genotyping, high-throughput phenotyping, mutation breeding, reverse breeding, transgenic breeding, shuttle breeding, speed breeding, low cost high-throughput field phenotyping, etc. This edited volume is therefore an excellent reference on accelerated development of improved crop varieties.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Journalistic Stance in Chinese and…
Changpeng Huan Hardcover R1,533 Discovery Miles 15 330
The Star in the Sycamore - Discovering…
Tom Springer Hardcover R742 R670 Discovery Miles 6 700
Mole's Spectacles
Julia Donaldson Board book R220 R200 Discovery Miles 2 000
Rivers - From Mountain Streams to City…
Claudia Martin Hardcover R626 Discovery Miles 6 260
Who's At The Zoo?
Julia Donaldson Board book R220 R200 Discovery Miles 2 000
HP 925 Black Original Ink Cartridge ~500…
R545 Discovery Miles 5 450
Wat Moet Ons Met Ons Kerk Doen?
Jurie van den Heever Paperback  (1)
R311 Discovery Miles 3 110
Tito and RuRu - Stories about a boy and…
Norma Wilkinson Hardcover R631 R569 Discovery Miles 5 690
French Speaking Activities - Fun Ways to…
Sinead Leleu Paperback R648 Discovery Miles 6 480
The Soul Of An Entrepreneur - Work And…
David Sax Paperback R405 R361 Discovery Miles 3 610

 

Partners