![]() |
![]() |
Your cart is empty |
||
Showing 1 - 4 of 4 matches in All Departments
This book provides insights into some of the key achievements made in the study of Lotus japonicus (birdsfoot trefoil), as well as a timely overview of topics that are pertinent for future developments in legume genomics. Key topics covered include endosymbiosis, development, hormone regulation, carbon/nitrogen and secondary metabolism, as well as advances made in high-throughput genomic and genetic approaches. Research focusing on model plants has underpinned the recent growth in plant genomics and genetics and provided a basis for investigations of major crop species. In the legume family Fabaceae, groundbreaking genetic and genomic research has established a significant body of knowledge on Lotus japonicus, which was adopted as a model species more than 20 years ago. The diverse nature of legumes means that such research has a wide potential and agricultural impact, for example, on the world's protein production.
Genome sequence studies have become more and more important for plant breeding. Brassicas and Legumes: From Genome Structure to Breeding comprises 16 chapters and presents both an overview and the latest results of this rapidly expanding field. Topics covered include: genome analysis of a flowering plant, Arabidopsis thaliana; the sequence of the Arabidopsis genome as a tool for comparative structural genomics in Brassicaceae; application of molecular markers in Brassica coenospecies; the molecular genetic basis of flowering time variation in Brassica species; quantitative trait loci for clubroot resistance in Brassica oleracea; structural differences of S locus between Brassica oleracea and Brassica rapa; Brassica and legume chromosomes; sequence analysis of the Lotus japonicus genome; introduction of an early flowering accession ‘Miyakojima’ MG-20 to molecular genetics in Lotus japonicus; genetic linkage map of the model legume Lotus japonicus; construction of a high quality genome library of Lotus japonicus; genome analysis of Mesorhizobium loti: a symbiotic partner to Lotus japonicus; molecular linkage map of the model legume Medicago truncatula; genetic mapping of seed and nodule protein markers in diploid alfalfa (Medicago sativa); mapping the chickpea (Cicer arietinum) genome: localization of fungal resistance genes in interspecific crosses.
This book provides insights into some of the key achievements made in the study of Lotus japonicus (birdsfoot trefoil), as well as a timely overview of topics that are pertinent for future developments in legume genomics. Key topics covered include endosymbiosis, development, hormone regulation, carbon/nitrogen and secondary metabolism, as well as advances made in high-throughput genomic and genetic approaches. Research focusing on model plants has underpinned the recent growth in plant genomics and genetics and provided a basis for investigations of major crop species. In the legume family Fabaceae, groundbreaking genetic and genomic research has established a significant body of knowledge on Lotus japonicus, which was adopted as a model species more than 20 years ago. The diverse nature of legumes means that such research has a wide potential and agricultural impact, for example, on the world’s protein production.
Genome sequence studies have become more and more important for plant breeding. Brassicas and Legumes: From Genome Structure to Breeding comprises 16 chapters and presents both an overview and the latest results of this rapidly expanding field. Topics covered include: genome analysis of a flowering plant, Arabidopsis thaliana; the sequence of the Arabidopsis genome as a tool for comparative structural genomics in Brassicaceae; application of molecular markers in Brassica coenospecies; the molecular genetic basis of flowering time variation in Brassica species; quantitative trait loci for clubroot resistance in Brassica oleracea; structural differences of S locus between Brassica oleracea and Brassica rapa; Brassica and legume chromosomes; sequence analysis of the Lotus japonicus genome; introduction of an early flowering accession Miyakojima MG-20 to molecular genetics in Lotus japonicus; genetic linkage map of the model legume Lotus japonicus; construction of a high quality genome library of Lotus japonicus; genome analysis of Mesorhizobium loti: a symbiotic partner to Lotus japonicus; molecular linkage map of the model legume Medicago truncatula; genetic mapping of seed and nodule protein markers in diploid alfalfa (Medicago sativa); mapping the chickpea (Cicer arietinum) genome: localization of fungal resistance genes in interspecific crosses. "
|
![]() ![]() You may like...
|