Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 4 of 4 matches in All Departments
Over the past 25 years or so there has been a revolution in the devel- mentoffunctionalpolymers. Whilemanypolymersascommoditiesrepresent huge markets, new materials with a high degree of functionality have been developed. Such specialty polymers play important roles in our day-to-day lives. The current volumes 213 and 214 of Advances in Polymer Science focus on photoresponsive polymers. In particular polymers that can either change the properties of a beam of light that passes through them or who change their properties in response to light. Volume 213 starts with an introd- tion to two-photon absorption by Rumi, Barlow, Wang, Perry, and Marder. In this chapter they develop the basic concepts of two-photon absorption, and describe structure-property relationships for a variety of symmetrical and unsymmetrical molecules. The applications of these materials in 3D - crofabrication of polymers, metals, and oxide materials are detailed in the chapterentitled"Two-PhotonAbsorberandTwo-PhotonInduced Chemistry" contributed by the same group of authors. Then Bel?eld, Bondar, and Yao describe the molecules, dendrimers, oligomers, and polymers that can be - cited by two-photonabsorption and their application in processing materials with three-dimensional spatial control in their chapter entitled "Two-Photon Absorbing Photonic Materials. " Speci?cally they describe the development of symmetrical and polar conjugated materials for two-photon absorption and their use as photo-initiatorsfor3D microfabrication. Juodkazis,Mizeikis, and Misawaalsoexploremultiphotonprocessingofmaterials intheirchapter,and provide more focus on the processing aspects of these materials and discuss thestate-of-the-artinresolution.
Over the past 25 years or so there has been a revolution in the devel- mentoffunctionalpolymers. Whilemanypolymersascommoditiesrepresent huge markets, new materials with a high degree of functionality have been developed. Such specialty polymers play important roles in our day-to-day lives. The current volumes 213 and 214 of Advances in Polymer Science focus on photoresponsive polymers. In particular polymers that can either change the properties of a beam of light that passes through them or who change their properties in response to light. Volume 213 starts with an introd- tion to two-photon absorption by Rumi, Barlow, Wang, Perry, and Marder. In this chapter they develop the basic concepts of two-photon absorption, and describe structure-property relationships for a variety of symmetrical and unsymmetrical molecules. The applications of these materials in 3D - crofabrication of polymers, metals, and oxide materials are detailed in the chapterentitled"Two-PhotonAbsorberandTwo-PhotonInduced Chemistry" contributed by the same group of authors. Then Bel?eld, Bondar, and Yao describe the molecules, dendrimers, oligomers, and polymers that can be - cited by two-photonabsorption and their application in processing materials with three-dimensional spatial control in their chapter entitled "Two-Photon Absorbing Photonic Materials. " Speci?cally they describe the development of symmetrical and polar conjugated materials for two-photon absorption and their use as photo-initiatorsfor3D microfabrication. Juodkazis,Mizeikis, and Misawaalsoexploremultiphotonprocessingofmaterials intheirchapter,and provide more focus on the processing aspects of these materials and discuss thestate-of-the-artinresolution.
Over the past 25 years or so there has been a revolution in the devel- mentoffunctionalpolymers. Whilemanypolymersascommoditiesrepresent huge markets, new materials with a high degree of functionality have been developed. Such specialty polymers play important roles in our day-to-day lives. The current volumes 213 and 214 of Advances in Polymer Science focus on photoresponsive polymers. In particular polymers that can either change the properties of a beam of light that passes through them or who change their properties in response to light. Volume 213 starts with an introd- tion to two-photon absorption by Rumi, Barlow, Wang, Perry, and Marder. In this chapter they develop the basic concepts of two-photon absorption, and describe structure-property relationships for a variety of symmetrical and unsymmetrical molecules. The applications of these materials in 3D - crofabrication of polymers, metals, and oxide materials are detailed in the chapterentitled"Two-PhotonAbsorberandTwo-PhotonInduced Chemistry" contributed by the same group of authors. Then Bel?eld, Bondar, and Yao describe the molecules, dendrimers, oligomers, and polymers that can be - cited by two-photonabsorption and their application in processing materials with three-dimensional spatial control in their chapter entitled "Two-Photon Absorbing Photonic Materials. " Speci?cally they describe the development of symmetrical and polar conjugated materials for two-photon absorption and their use as photo-initiatorsfor3D microfabrication. Juodkazis,Mizeikis, and Misawaalsoexploremultiphotonprocessingofmaterials intheirchapter,and provide more focus on the processing aspects of these materials and discuss thestate-of-the-artinresolution.
With the development of courses on materials synthesis and the need to carry out specific chemical transformations in the laboratory, good practical advice will be needed for those requiring more detail on conjugated materials synthesis. The purpose of this book is to give researchers and students an introduction and reference that efficiently provides general information for each important synthetic method category and a number of examples from the literature to convey practically important variations. It is useful as an outline for advanced organic and materials science courses as well as a good introduction and desk reference for new and experienced researchers in the field.
|
You may like...
Transformers 7 - Rise Of The Beasts
Anthony Ramos, Dominique Fishback
DVD
R108
Discovery Miles 1 080
|