0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R2,500 - R5,000 (1)
  • R5,000 - R10,000 (1)
  • -
Status
Brand

Showing 1 - 2 of 2 matches in All Departments

Machine Learning Models and Algorithms for Big Data Classification - Thinking with Examples for Effective Learning (Hardcover,... Machine Learning Models and Algorithms for Big Data Classification - Thinking with Examples for Effective Learning (Hardcover, 1st ed. 2016)
Shan Suthaharan
R4,828 Discovery Miles 48 280 Ships in 12 - 19 working days

This book presents machine learning models and algorithms to address big data classification problems. Existing machine learning techniques like the decision tree (a hierarchical approach), random forest (an ensemble hierarchical approach), and deep learning (a layered approach) are highly suitable for the system that can handle such problems. This book helps readers, especially students and newcomers to the field of big data and machine learning, to gain a quick understanding of the techniques and technologies; therefore, the theory, examples, and programs (Matlab and R) presented in this book have been simplified, hardcoded, repeated, or spaced for improvements. They provide vehicles to test and understand the complicated concepts of various topics in the field. It is expected that the readers adopt these programs to experiment with the examples, and then modify or write their own programs toward advancing their knowledge for solving more complex and challenging problems. The presentation format of this book focuses on simplicity, readability, and dependability so that both undergraduate and graduate students as well as new researchers, developers, and practitioners in this field can easily trust and grasp the concepts, and learn them effectively. It has been written to reduce the mathematical complexity and help the vast majority of readers to understand the topics and get interested in the field. This book consists of four parts, with the total of 14 chapters. The first part mainly focuses on the topics that are needed to help analyze and understand data and big data. The second part covers the topics that can explain the systems required for processing big data. The third part presents the topics required to understand and select machine learning techniques to classify big data. Finally, the fourth part concentrates on the topics that explain the scaling-up machine learning, an important solution for modern big data problems.

Machine Learning Models and Algorithms for Big Data Classification - Thinking with Examples for Effective Learning (Paperback,... Machine Learning Models and Algorithms for Big Data Classification - Thinking with Examples for Effective Learning (Paperback, Softcover reprint of the original 1st ed. 2016)
Shan Suthaharan
R5,925 Discovery Miles 59 250 Ships in 10 - 15 working days

This book presents machine learning models and algorithms to address big data classification problems. Existing machine learning techniques like the decision tree (a hierarchical approach), random forest (an ensemble hierarchical approach), and deep learning (a layered approach) are highly suitable for the system that can handle such problems. This book helps readers, especially students and newcomers to the field of big data and machine learning, to gain a quick understanding of the techniques and technologies; therefore, the theory, examples, and programs (Matlab and R) presented in this book have been simplified, hardcoded, repeated, or spaced for improvements. They provide vehicles to test and understand the complicated concepts of various topics in the field. It is expected that the readers adopt these programs to experiment with the examples, and then modify or write their own programs toward advancing their knowledge for solving more complex and challenging problems. The presentation format of this book focuses on simplicity, readability, and dependability so that both undergraduate and graduate students as well as new researchers, developers, and practitioners in this field can easily trust and grasp the concepts, and learn them effectively. It has been written to reduce the mathematical complexity and help the vast majority of readers to understand the topics and get interested in the field. This book consists of four parts, with the total of 14 chapters. The first part mainly focuses on the topics that are needed to help analyze and understand data and big data. The second part covers the topics that can explain the systems required for processing big data. The third part presents the topics required to understand and select machine learning techniques to classify big data. Finally, the fourth part concentrates on the topics that explain the scaling-up machine learning, an important solution for modern big data problems.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Toward Reflexive Ethnography…
D. Bromley, Lewis F. Carter Hardcover R4,178 Discovery Miles 41 780
The Book of Woodcraft
Ernest Thompson Seton Hardcover R1,203 Discovery Miles 12 030
30 Millennia of Erotic Art
Hans-Jurgen Doepp Hardcover R1,710 Discovery Miles 17 100
The Noble Art of Venerie or Hunting…
George -1577 Gascoigne, Thomas -1615 Purfoot, … Hardcover R950 Discovery Miles 9 500
It Is as It Is
David Brazier, Ruby Lee Hardcover R2,058 R1,667 Discovery Miles 16 670
Moderation in Fashion - Or, an Answer to…
Samuel Grascome Paperback R536 Discovery Miles 5 360
Twentieth-Century Fiction - From Text to…
Peter Verdonk, Jean Jacques Weber Paperback R1,900 Discovery Miles 19 000
The Works of D. Jonathan Swift ... - to…
Jonathan Swift Paperback R575 Discovery Miles 5 750
The Love Song Of Andre P. Brink - A…
Leon De Kock Paperback  (1)
R460 Discovery Miles 4 600
Yackety Yack [serial]; 1983
University of North Carolina (1793-19 Hardcover R1,061 Discovery Miles 10 610

 

Partners