![]() |
![]() |
Your cart is empty |
||
Showing 1 - 10 of 10 matches in All Departments
Developments in the Formulation and Reinforcement of Concrete, Second Edition, presents the latest developments on topics covered in the first edition. In addition, it includes new chapters on supplementary cementitious materials, mass concrete, the sustainably of concrete, service life prediction, limestone cements, the corrosion of steel in concrete, alkali-aggregate reactions, and concrete as a multiscale material. The book's chapters introduce the reader to some of the most important issues facing today's concrete industry. With its distinguished editor and international team of contributors, users will find this to be a must-have reference for civil and structural engineers.
Advanced cementitious composites can be designed to have outstanding combinations of strength (five to ten times that of conventional concrete) and energy absorption capacity (up to 1000 times that of plain concrete). This second edition brings together in one volume the latest research developments in this rapidly expanding area. The book is split into two parts. The first part is concerned with the mechanics of fibre reinforced brittle matrices and the implications for cementitious systems. In the second part the authors describe the various types of fibre-cement composites, discussing production processes, mechanical and physical properties, durability and applications. Two new chapters have been added, covering fibre specification and structural applications. Fibre Reinforced Cementitious Composites will be of great interest to practitioners involved in modern concrete technology and will also be of use to academics, researchers and graduate students.
Production of Portland cement is responsible for about seven percent of the world's greenhouse gas emissions. The pressure to make the production of concrete more sustainable, or "greener", is considerable and increasing. This requires a wholesale shift in processes, materials and methods in the concrete industry. Pure Portland cement will need to be replaced by more complex binary, tertiary or even quaternary binders, including other types of cementitious materials. We can expect an increasing use of high performance concrete, primarily because of its high sustainability and durability. Much more attention will have to be paid to the proper curing of the concrete if we want to improve its life expectancy. Presenting the latest advances in the science of concrete this book focuses particularly on sustainability, durability, and economy. It explores the potential for increased sustainability in concrete from the initial mixing right through to its behaviour in complex structures exposed to different types of loads and aggressive environments.
Bringing together in one volume the latest research and
information, this book provides a comprehensive account of the
selection and use of aggregates in concrete. After an introduction
defining the purpose and role of aggregates in concrete, the
authors present an overview of aggregate sources and production
techniques, followed by a detailed study of their physical,
mechanical and chemical properties. This knowledge is then applied
to the use of aggregates in both plastic and hardened concretes,
and in the overall mix design. Special aggregates and their
applications are discussed in detail, as are the main
specifications, standards and tests in use.
Production of Portland cement is responsible for about seven percent of the world's greenhouse gas emissions. The pressure to make the production of concrete more sustainable, or "greener," is considerable and increasing. This requires a wholesale shift in processes, materials and methods in the concrete industry. Pure Portland cement will need to be replaced by more complex binary, tertiary or even quaternary binders, including other types of cementitious materials. We can expect an increasing use of high performance concrete, primarily because of its high sustainability and durability. Much more attention will have to be paid to the proper curing of the concrete if we want to improve its life expectancy. Presenting the latest advances in the science of concrete this book focuses particularly on sustainability, durability, and economy. It explores the potential for increased sustainability in concrete from the initial mixing right through to its behaviour in complex structures exposed to different types of loads and aggressive environments.
Advanced cementitious composites can be designed to have outstanding combinations of strength (five to ten times that of conventional concrete) and energy absorption capacity (up to 1000 times that of plain concrete). This second edition brings together in one volume the latest research developments in this rapidly expanding area. The book is split into two parts. The first part is concerned with the mechanics of fibre reinforced brittle matrices and the implications for cementitious systems. In the second part the authors describe the various types of fibre-cement composites, discussing production processes, mechanical and physical properties, durability and applications. Two new chapters have been added, covering fibre specification and structural applications. Fibre Reinforced Cementitious Composites will be of great interest to practitioners involved in modern concrete technology and will also be of use to academics, researchers and graduate students.
This book provides an up-to-date survey of durability issues, with a particular focus on specification and design, and how to achieve durability in actual concrete construction. It is aimed at the practising engineer, but is also a valuable resource for graduate-level programs in universities. Along with background to current philosophies it gathers together in one useful reference a summary of current knowledge on concrete durability, includes information on modern concrete materials, and shows how these materials can be combined to produce durable concrete. The approach is consistent with the increasing focus on sustainability that is being addressed by the concrete industry, with the current emphasis on 'design for durability'.
This book provides an up-to-date survey of durability issues, with a particular focus on specification and design, and how to achieve durability in actual concrete construction. It is aimed at the practising engineer, but is also a valuable resource for graduate-level programs in universities. Along with background to current philosophies it gathers together in one useful reference a summary of current knowledge on concrete durability, includes information on modern concrete materials, and shows how these materials can be combined to produce durable concrete. The approach is consistent with the increasing focus on sustainability that is being addressed by the concrete industry, with the current emphasis on 'design for durability'.
Bringing together in one volume the latest research and information, this book provides a detailed guide to the selection and use of aggregates in concrete. After an introduction defining the purpose and role of aggregates in concrete, the authors present an overview of aggregate sources and production techniques, followed by a detailed study of their physical, mechanical and chemical properties. This knowledge is then applied to the use of aggregates in both plastic and hardened concretes, and in the overall mix design. Special aggregates and their applications are discussed in detail, as are the current main specifications, standards and tests.
The MRS Symposium Proceeding series is an internationally recognised reference suitable for researchers and practitioners.
|
![]() ![]() You may like...
|