![]() |
![]() |
Your cart is empty |
||
Showing 1 - 2 of 2 matches in All Departments
No books dealing with a comprehensive illustration of the fast developing field of nonlinear analysis had been published for the mathematicians interested in this field for more than a half century until D. H. Hyers, G. Isac and Th. M. Rassias published their book, "Stability of Functional Equations in Several Variables." This book will complement the books of Hyers, Isac and Rassias and of Czerwik (Functional Equations and Inequalities in Several Variables) by presenting mainly the results applying to the Hyers-Ulam-Rassias stability. Many mathematicians have extensively investigated the subjects on the Hyers-Ulam-Rassias stability. This book covers and offers almost all classical results on the Hyers-Ulam-Rassias stability in an integrated and self-contained fashion.
​This book discusses the process by which Ulam's conjecture is proved, aptly detailing how mathematical problems may be solved by systematically combining interdisciplinary theories. It presents the state-of-the-art of various research topics and methodologies in mathematics, and mathematical analysis by presenting the latest research in emerging research areas, providing motivation for further studies. The book also explores the theory of extending the domain of local isometries by introducing a generalized span. For the reader, working knowledge of topology, linear algebra, and Hilbert space theory, is essential. The basic theories of these fields are gently and logically introduced. The content of each chapter provides the necessary building blocks to understanding the proof of Ulam’s conjecture and are summarized as follows: Chapter 1 presents the basic concepts and theorems of general topology. In Chapter 2, essential concepts and theorems in vector space, normed space, Banach space, inner product space, and Hilbert space, are introduced. Chapter 3 gives a presentation on the basics of measure theory. In Chapter 4, the properties of first- and second-order generalized spans are defined, examined, and applied to the study of the extension of isometries. Chapter 5 includes a summary of published literature on Ulam’s conjecture; the conjecture is fully proved in Chapter 6.
|
![]() ![]() You may like...
Revealing Revelation - How God's Plans…
Amir Tsarfati, Rick Yohn
Paperback
![]()
|