Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 2 of 2 matches in All Departments
This book is a "How To" guide for modeling population dynamics using Integral Projection Models (IPM) starting from observational data. It is written by a leading research team in this area and includes code in the R language (in the text and online) to carry out all computations. The intended audience are ecologists, evolutionary biologists, and mathematical biologists interested in developing data-driven models for animal and plant populations. IPMs may seem hard as they involve integrals. The aim of this book is to demystify IPMs, so they become the model of choice for populations structured by size or other continuously varying traits. The book uses real examples of increasing complexity to show how the life-cycle of the study organism naturally leads to the appropriate statistical analysis, which leads directly to the IPM itself. A wide range of model types and analyses are presented, including model construction, computational methods, and the underlying theory, with the more technical material in Boxes and Appendices. Self-contained R code which replicates all of the figures and calculations within the text is available to readers on GitHub. Stephen P. Ellner is Horace White Professor of Ecology and Evolutionary Biology at Cornell University, USA; Dylan Z. Childs is Lecturer and NERC Postdoctoral Fellow in the Department of Animal and Plant Sciences at The University of Sheffield, UK; Mark Rees is Professor in the Department of Animal and Plant Sciences at The University of Sheffield, UK.
"This book is written with the reality of biology students and their apprehension about mathematics in mind. The applications of mathematical models to real biological problems are not contrived, as they are in a number of other texts. And the biology examples are taken from the current literature--a wonderful help to those who will be teaching with this book."--Jim Keener, University of Utah, author of "Principles of Applied Mathematics" and "Mathematical Physiology" ""Dynamic Models in Biology" is a new and significant contribution to the field. Very well written and clearly presented, it fulfills its goal of bringing dynamic models into the undergraduate biology curriculum. Indeed it puts biology first, and then seeks to show how biological phenomena can be explained in mathematical terms."--Martin Henry H. Stevens, Miami University "This excellent book is a major contribution to the literature. Strong biologically and mathematically, well-organized, and engagingly written, it introduces the subject of dynamical models in biology in as coherent a way as I have seen anywhere. Few authors could approach this topic as authoritatively as do Ellner and Guckenheimer."--Simon Levin, Princeton University, author of "The Importance of Species" and "The Encyclopedia of Biodiversity"
|
You may like...
|