![]() |
![]() |
Your cart is empty |
||
Showing 1 - 7 of 7 matches in All Departments
This volume offers an introduction, in the form of four extensive lectures, to some recent developments in several active topics at the interface between geometry, topology and quantum field theory. The first lecture is by Christine Lescop on knot invariants and configuration spaces, in which a universal finite-type invariant for knots is constructed as a series of integrals over configuration spaces. This is followed by the contribution of Raimar Wulkenhaar on Euclidean quantum field theory from a statistical point of view. The author also discusses possible renormalization techniques on noncommutative spaces. The third lecture is by Anamaria Font and Stefan Theisen on string compactification with unbroken supersymmetry. The authors show that this requirement leads to internal spaces of special holonomy and describe Calabi-Yau manifolds in detail. The last lecture, by Thierry Fack, is devoted to a K-theory proof of the Atiyah-Singer index theorem and discusses some applications of K-theory to noncommutative geometry. These lectures notes, which are aimed in particular at graduate students in physics and mathematics, start with introductory material before presenting more advanced results. Each chapter is self-contained and can be read independently.
This volume offers a unique collection of outstanding contributions from renowned women mathematicians who met in Cambridge for a conference under the auspices of European Women in Mathematics (EWM). These contributions serve as excellent surveys of their subject areas, including symplectic topology, combinatorics and number theory.The volume moreover sheds light on prominent women mathematicians who worked in Cambridge in the late 19th and early 20th centuries by providing an insightful historical introduction at the beginning of the volume.The volume concludes with short contributions from women mathematicians from across Europe working in various areas of mathematics ranging from group theory to magnetic fields.
Based on lectures held at the 7th Villa de Leyva summer school, this book presents an introduction to topics of current interest in the interface of geometry, topology and physics. It is aimed at graduate students in physics or mathematics with interests in geometric, algebraic as well as topological methods and their applications to quantum field theory.This volume contains the written notes corresponding to lectures given by experts in the field. They cover current topics of research in a way that is suitable for graduate students of mathematics or physics interested in the recent developments and interactions between geometry, topology and physics. The book also contains contributions by younger participants, displaying the ample range of topics treated in the school. A key feature of the present volume is the provision of a pedagogical presentation of rather advanced topics, in a way which is suitable for both mathematicians and physicists.
This volume offers an introduction, in the form of four extensive lectures, to some recent developments in several active topics at the interface between geometry, topology and quantum field theory. The first lecture is by Christine Lescop on knot invariants and configuration spaces, in which a universal finite-type invariant for knots is constructed as a series of integrals over configuration spaces. This is followed by the contribution of Raimar Wulkenhaar on Euclidean quantum field theory from a statistical point of view. The author also discusses possible renormalization techniques on noncommutative spaces. The third lecture is by Anamaria Font and Stefan Theisen on string compactification with unbroken supersymmetry. The authors show that this requirement leads to internal spaces of special holonomy and describe Calabi-Yau manifolds in detail. The last lecture, by Thierry Fack, is devoted to a K-theory proof of the Atiyah-Singer index theorem and discusses some applications of K-theory to noncommutative geometry. These lectures notes, which are aimed in particular at graduate students in physics and mathematics, start with introductory material before presenting more advanced results. Each chapter is self-contained and can be read independently.
Aimed at graduate students in physics and mathematics, this book provides an introduction to recent developments in several active topics at the interface between algebra, geometry, topology and quantum field theory. The first part of the book begins with an account of important results in geometric topology. It investigates the differential equation aspects of quantum cohomology, before moving on to noncommutative geometry. This is followed by a further exploration of quantum field theory and gauge theory, describing AdS/CFT correspondence, and the functional renormalization group approach to quantum gravity. The second part covers a wide spectrum of topics on the borderline of mathematics and physics, ranging from orbifolds to quantum indistinguishability and involving a manifold of mathematical tools borrowed from geometry, algebra and analysis. Each chapter presents introductory material before moving on to more advanced results. The chapters are self-contained and can be read independently of the rest.
Classical string theory is concerned with the propagation of classical 1-dimensional curves 'strings', and the theory has connections to the calculus of variations, minimal surfaces and harmonic maps. The quantization of string theory gives rise to problems in different areas, according to the method used. The representation theory of Lie, Kac-Moody and Virasoro algebras have been used for such quantization. In this lecture note the authors give an introduction to certain global analytic and probabilistic aspects of string theory. It is their intention to bring together, and make explicit the necessary mathematical tools. Researchers with an interest in string theory, in either mathematics or theoretical physics, will find this a stimulating volume.
This volume offers an introduction to recent developments in several active topics of research at the interface between geometry, topology and quantum field theory. These include Hopf algebras underlying renormalization schemes in quantum field theory, noncommutative geometry with applications to index theory on one hand and the study of aperiodic solids on the other, geometry and topology of low dimensional manifolds with applications to topological field theory, Chern-Simons supergravity and the anti de Sitter/conformal field theory correspondence. It comprises seven lectures organized around three main topics, noncommutative geometry, topological field theory, followed by supergravity and string theory, complemented by some short communications by young participants of the school.
|
![]() ![]() You may like...
Human Rights and Personal Self-Defense…
Jan Arno Hessbruegge
Hardcover
R2,873
Discovery Miles 28 730
Tinker Bell and the Great Fairy Rescue
Mae Whitman, Michael Sheen, …
DVD
![]() R59 Discovery Miles 590
Freezing Order - A True Story Of Russian…
Bill Browder
Paperback
![]()
|