![]() |
![]() |
Your cart is empty |
||
Showing 1 - 5 of 5 matches in All Departments
The theory of two-person, zero-sum differential games started at the be- ginning of the 1960s with the works of R. Isaacs in the United States and L. S. Pontryagin and his school in the former Soviet Union. Isaacs based his work on the Dynamic Programming method. He analyzed many special cases of the partial differential equation now called Hamilton- Jacobi-Isaacs-briefiy HJI-trying to solve them explicitly and synthe- sizing optimal feedbacks from the solution. He began a study of singular surfaces that was continued mainly by J. Breakwell and P. Bernhard and led to the explicit solution of some low-dimensional but highly nontriv- ial games; a recent survey of this theory can be found in the book by J. Lewin entitled Differential Games (Springer, 1994). Since the early stages of the theory, several authors worked on making the notion of value of a differential game precise and providing a rigorous derivation of the HJI equation, which does not have a classical solution in most cases; we mention here the works of W. Fleming, A. Friedman (see his book, Differential Games, Wiley, 1971), P. P. Varaiya, E. Roxin, R. J. Elliott and N. J. Kalton, N. N. Krasovskii, and A. I. Subbotin (see their book Po- sitional Differential Games, Nauka, 1974, and Springer, 1988), and L. D. Berkovitz. A major breakthrough was the introduction in the 1980s of two new notions of generalized solution for Hamilton-Jacobi equations, namely, viscosity solutions, by M. G. Crandall and P. -L.
This book provides an integrated treatment of the theory of nonnegative matrices and some related classes of positive matrices, concentrating on connections with game theory, combinatorics, inequalities, optimization and mathematical economics. The authors have chosen the wide variety of applications, which include price fixing, scheduling, and the fair division problem, both for their elegant mathematical content and for their accessibility to students with minimal preparation. They present many new results in matrix theory for the first time in book form, while they present more standard topics in a novel fashion. The treatment is rigorous and almost all results are proved completely. These new results and applications will be of great interest to researchers in linear programming, statistics, and operations research. The minimal prerequisites also make the book accessible to first year graduate students.
The paradigms of dynamic games play an important role in the development of multi-agent models in engineering, economics, and management science. The applicability of their concepts stems from the ability to encompass situations with uncertainty, incomplete information, fluctuating coalition structure, and coupled constraints imposed on the strategies of all the players. This book - an outgrowth of the 10th International Symposium on Dynamic Games - presents current developments of the theory of dynamic games and its applications to various domains, in particular energy-environment economics and management sciences. The volume uses dynamic game models of various sorts to approach and solve several problems pertaining to pursuit-evasion, marketing, finance, climate and environmental economics, resource exploitation, as well as auditing and tax evasions. In addition, it includes some chapters on cooperative games, which are increasingly drawing dynamic approaches to their classical solutions. dynamic game theory and its applications for researchers, practitioners, and graduate students in applied mathematics, engineering, economics, as well as environmental and management sciences.
The theory of two-person, zero-sum differential games started at the be- ginning of the 1960s with the works of R. Isaacs in the United States and L. S. Pontryagin and his school in the former Soviet Union. Isaacs based his work on the Dynamic Programming method. He analyzed many special cases of the partial differential equation now called Hamilton- Jacobi-Isaacs-briefiy HJI-trying to solve them explicitly and synthe- sizing optimal feedbacks from the solution. He began a study of singular surfaces that was continued mainly by J. Breakwell and P. Bernhard and led to the explicit solution of some low-dimensional but highly nontriv- ial games; a recent survey of this theory can be found in the book by J. Lewin entitled Differential Games (Springer, 1994). Since the early stages of the theory, several authors worked on making the notion of value of a differential game precise and providing a rigorous derivation of the HJI equation, which does not have a classical solution in most cases; we mention here the works of W. Fleming, A. Friedman (see his book, Differential Games, Wiley, 1971), P. P. Varaiya, E. Roxin, R. J. Elliott and N. J. Kalton, N. N. Krasovskii, and A. I. Subbotin (see their book Po- sitional Differential Games, Nauka, 1974, and Springer, 1988), and L. D. Berkovitz. A major breakthrough was the introduction in the 1980s of two new notions of generalized solution for Hamilton-Jacobi equations, namely, viscosity solutions, by M. G. Crandall and P. -L.
This book provides an integrated treatment of the theory of nonnegative matrices and some related classes of positive matrices, concentrating on connections with game theory, combinatorics, inequalities, optimization and mathematical economics. The authors have chosen the wide variety of applications, which include price fixing, scheduling, and the fair division problem, both for their elegant mathematical content and for their accessibility to students with minimal preparation. They present many new results in matrix theory for the first time in book form, while they present more standard topics in a novel fashion. The treatment is rigorous and almost all results are proved completely. These new results and applications will be of great interest to researchers in linear programming, statistics, and operations research. The minimal prerequisites also make the book accessible to first year graduate students.
|
![]() ![]() You may like...Not available
Discovering Daniel - Finding Our Hope In…
Amir Tsarfati, Rick Yohn
Paperback
|