![]() |
![]() |
Your cart is empty |
||
Showing 1 - 7 of 7 matches in All Departments
Many regard Albert Einstein as the greatest physicist since Newton. What exactly did he do that is so important in physics? We provide an introduction to his physics at a level accessible to an undergraduate physics student. All equations are worked out in detail from the beginning. Einstein's doctoral thesis and his Brownian motion paper were decisive contributions to our understanding of matter as composed of molecules and atoms. Einstein was one of the founding fathers of quantum theory: his photon proposal through the investigation of blackbody radiation, his quantum theory of photoelectric effect and specific heat, his calculation of radiation fluctuation giving the first statement of wave-particle duality, his introduction of probability in the description of quantum radiative transitions, and finally the quantum statistics and Bose-Einstein condensation. Einstein's special theory of relativity gave us the famous E=mc(2) relation and the new kinematics leading to the idea of the 4-dimensional spacetime as the arena in which physical events take place. Einstein's geometric theory of gravity, general relativity, extends Newton's theory to time-dependent and strong gravitational fields. It laid the ground work for the study of black holes and cosmology. This is a physics book with material presented in the historical context. We do not stop at Einstein's discovery, but carry the discussion onto some of the later advances: Bell's theorem, quantum field theory, gauge theories and Kaluza-Klein unification in a spacetime with an extra spatial dimension. Accessibility of the material to a modern-day reader is the goal of our presentation. Although the book is written with primarily a physics readership in mind (it can also function as a textbook), enough pedagogical support material is provided that anyone with a solid background in introductory physics can, with some effort, understand a good part of this presentation.
Einstein's general theory of relativity is introduced in this
advanced undergraduate and beginning graduate level textbook.
Topics include special relativity, in the formalism of Minkowski's
four-dimensional space-time, the principle of equivalence,
Riemannian geometry and tensor analysis, Einstein field equation,
as well as many modern cosmological subjects, from primordial
inflation and cosmic microwave anisotropy to the dark energy that
propels an accelerating universe.
Gauge theory of elementary particle physics was first published in 1984 and has become a standard textbook in the subject. This companion volume provides graduate students with problems and solutions, enabling them to learn the calculational techniques necessary to understand the research literature. Several new topics are also included and the presentation is self-contained, making the book suitable even for those not familiar with the main book.
Einstein's general theory of relativity is introduced in this
advanced undergraduate and beginning graduate level textbook.
Topics include special relativity, in the formalism of Minkowski's
four-dimensional space-time, the principle of equivalence,
Riemannian geometry and tensor analysis, Einstein field equation,
as well as many modern cosmological subjects, from primordial
inflation and cosmic microwave anisotropy to the dark energy that
propels an accelerating universe.
This is a practical introduction to the principal ideas in gauge theory and their applications to elementary particle physics. It explains technique and methodology with simple exposition backed up by many illustrative examples. Derivations, some of well known results, are presented in sufficient detail to make the text accessible to readers entering the field for the first time. The book focuses on the strong interaction theory of quantum chromodynamics and the electroweak interaction theory of Glashow, Weinberg, and Salam, as well as the grand unification theory, exemplified by the simplest SU(5) model. Not intended as an exhaustive survey, the book nevertheless provides the general background necessary for a serious student who wishes to specialize in the field of elementary particle theory. Physicists with an interest in general aspects of gauge theory will also find the book highly useful.
This advanced undergraduate text introduces Einstein's general theory of relativity. The topics covered include geometric formulation of special relativity, the principle of equivalence, Einstein's field equation and its spherical-symmetric solution, as well as cosmology. An emphasis is placed on physical examples and simple applications without the full tensor apparatus. It begins by examining the physics of the equivalence principle and looks at how it inspired Einstein's idea of curved spacetime as the gravitational field. At a more mathematically accessible level, it provides a metric description of a warped space, allowing the reader to study many interesting phenomena such as gravitational time dilation, GPS operation, light deflection, precession of Mercury's perihelion, and black holes. Numerous modern topics in cosmology are discussed from primordial inflation and cosmic microwave background to the dark energy that propels an accelerating universe. Building on Cheng's previous book, 'Relativity, Gravitation and Cosmology: A Basic Introduction', this text has been tailored to the advanced student. It concentrates on the core elements of the subject making it suitable for a one-semester course at the undergraduate level. It can also serve as an accessible introduction of general relativity and cosmology for those readers who want to study the subject on their own. The proper tensor formulation of Einstein's field equation is presented in an appendix chapter for those wishing to glimpse further at the mathematical details.
This advanced undergraduate text introduces Einstein's general theory of relativity. The topics covered include geometric formulation of special relativity, the principle of equivalence, Einstein's field equation and its spherical-symmetric solution, as well as cosmology. An emphasis is placed on physical examples and simple applications without the full tensor apparatus. It begins by examining the physics of the equivalence principle and looks at how it inspired Einstein's idea of curved spacetime as the gravitational field. At a more mathematically accessible level, it provides a metric description of a warped space, allowing the reader to study many interesting phenomena such as gravitational time dilation, GPS operation, light deflection, precession of Mercury's perihelion, and black holes. Numerous modern topics in cosmology are discussed from primordial inflation and cosmic microwave background to the dark energy that propels an accelerating universe. Building on Cheng's previous book, 'Relativity, Gravitation and Cosmology: A Basic Introduction', this text has been tailored to the advanced student. It concentrates on the core elements of the subject making it suitable for a one-semester course at the undergraduate level. It can also serve as an accessible introduction of general relativity and cosmology for those readers who want to study the subject on their own. The proper tensor formulation of Einstein's field equation is presented in an appendix chapter for those wishing to glimpse further at the mathematical details.
|
![]() ![]() You may like...
Better Choices - Ensuring South Africa's…
Greg Mills, Mcebisi Jonas, …
Paperback
|