![]() |
![]() |
Your cart is empty |
||
Showing 1 - 16 of 16 matches in All Departments
This book is mainly a collection of lecture notes for the 2021 LIASFMA International Graduate School on Applied Mathematics. It provides the readers some important results on the theory, the methods, and the application in the field of 'Control of Partial Differential Equations'. It is useful for researchers and graduate students in mathematics or control theory, and for mathematicians or engineers with an interest in control systems governed by partial differential equations.
This monograph describes global propagation of regular nonlinear hyperbolic waves described by first-order quasilinear hyperbolic systems in one dimension. The exposition is clear, concise, and unfolds systematically beginning with introductory material and leading to the original research of the authors. Topics are motivated with a number of physical examples from the areas of elastic materials, one-dimensional gas dynamics, and waves. Aimed at researchers and graduate students in partial differential equations and related topics, this book will stimulate further research and help readers further understand important aspects and recent progress of regular nonlinear hyperbolic waves.
Within this carefully presented monograph, the authors extend the universal phenomenon of synchronization from finite-dimensional dynamical systems of ordinary differential equations (ODEs) to infinite-dimensional dynamical systems of partial differential equations (PDEs). By combining synchronization with controllability, they introduce the study of synchronization to the field of control and add new perspectives to the investigation of synchronization for systems of PDEs. With a focus on synchronization for a coupled system of wave equations, the text is divided into three parts corresponding to Dirichlet, Neumann, and coupled Robin boundary controls. Each part is then subdivided into chapters detailing exact boundary synchronization and approximate boundary synchronization, respectively. The core intention is to give artificial intervention to the evolution of state variables through appropriate boundary controls for realizing the synchronization in a finite time, creating a novel viewpoint into the investigation of synchronization for systems of partial differential equations, and revealing some essentially dissimilar characteristics from systems of ordinary differential equations. Primarily aimed at researchers and graduate students of applied mathematics and applied sciences, this text will particularly appeal to those interested in applied PDEs and control theory for distributed parameter systems.
This book contains a selection of more than 500 mathematical problems and their solutions from the PhD qualifying examination papers of more than ten famous American universities. The mathematical problems cover six aspects of graduate school mathematics: Algebra, Topology, Differential Geometry, Real Analysis, Complex Analysis and Partial Differential Equations. While the depth of knowledge involved is not beyond the contents of the textbooks for graduate students, discovering the solution of the problems requires a deep understanding of the mathematical principles plus skilled techniques. For students, this book is a valuable complement to textbooks. Whereas for lecturers teaching graduate school mathematics, it is a helpful reference.
This book contains a selection of more than 500 mathematical problems and their solutions from the PhD qualifying examination papers of more than ten famous American universities. The mathematical problems cover six aspects of graduate school mathematics: Algebra, Topology, Differential Geometry, Real Analysis, Complex Analysis and Partial Differential Equations. While the depth of knowledge involved is not beyond the contents of the textbooks for graduate students, discovering the solution of the problems requires a deep understanding of the mathematical principles plus skilled techniques. For students, this book is a valuable complement to textbooks. Whereas for lecturers teaching graduate school mathematics, it is a helpful reference.
This volume is composed of two parts: Mathematical and Numerical Analysis for Strongly Nonlinear Plasma Models and Exact Controllability and Observability for Quasilinear Hyperbolic Systems and Applications. It presents recent progress and results obtained in the domains related to both subjects without attaching much importance to the details of proofs but rather to difficulties encountered, to open problems and possible ways to be exploited. It will be very useful for promoting further study on some important problems in the future.
This book focuses on nonlinear wave equations, which are of considerable significance from both physical and theoretical perspectives. It also presents complete results on the lower bound estimates of lifespan (including the global existence), which are established for classical solutions to the Cauchy problem of nonlinear wave equations with small initial data in all possible space dimensions and with all possible integer powers of nonlinear terms. Further, the book proposes the global iteration method, which offers a unified and straightforward approach for treating these kinds of problems. Purely based on the properties of solut ions to the corresponding linear problems, the method simply applies the contraction mapping principle.
This book is a collection of lecture notes for the LIASFMA Shanghai Summer School on 'One-dimensional Hyperbolic Conservation Laws and Their Applications' which was held during August 16 to August 27, 2015 at Shanghai Jiao Tong University, Shanghai, China. This summer school is one of the activities promoted by Sino-French International Associate Laboratory in Applied Mathematics (LIASFMA in short). LIASFMA was established jointly by eight institutions in China and France in 2014, which is aimed at providing a platform for some of the leading French and Chinese mathematicians to conduct in-depth researches, extensive exchanges, and student training in the field of applied mathematics. This summer school has the privilege of being the first summer school of the newly established LIASFMA, which makes it significant.
This book collects papers mainly presented at the "International Conference on Partial Differential Equations: Theory, Control and Approximation" (May 28 to June 1, 2012 in Shanghai) in honor of the scientific legacy of the exceptional mathematician Jacques-Louis Lions. The contributors are leading experts from all over the world, including members of the Academies of Sciences in France, the USA and China etc., and their papers cover key fields of research, e.g. partial differential equations, control theory and numerical analysis, that Jacques-Louis Lions created or contributed so much to establishing.
This book is a collection of papers in memory of Gu Chaohao on the subjects of Differential Geometry, Partial Differential Equations and Mathematical Physics that Gu Chaohao made great contributions to with all his intelligence during his lifetime.All contributors to this book are close friends, colleagues and students of Gu Chaohao. They are all excellent experts among whom there are 9 members of the Chinese Academy of Sciences. Therefore this book will provide some important information on the frontiers of the related subjects.
This book collects papers mainly presented at the "International Conference on Partial Differential Equations: Theory, Control and Approximation" (May 28 to June 1, 2012 in Shanghai) in honor of the scientific legacy of the exceptional mathematician Jacques-Louis Lions. The contributors are leading experts from all over the world, including members of the Academies of Sciences in France, the USA and China etc., and their papers cover key fields of research, e.g. partial differential equations, control theory and numerical analysis, that Jacques-Louis Lions created or contributed so much to establishing.
Spontaneous potential (SP) well-logging is one of the most common and useful well-logging techniques in petroleum exploitation. This monograph is the first of its kind on the mathematical model of spontaneous potential well-logging and its numerical solutions. The mathematical model established in this book shows the necessity of introducing Sobolev spaces with fractional power, which seriously increases the difficulty of proving the well-posedness and proposing numerical solution schemes. In this book, in the axisymmetric situation the well-posedness of the corresponding mathematical model is proved and three efficient schemes of numerical solution are proposed, supported by a number of numerical examples to meet practical computation needs.
Within this carefully presented monograph, the authors extend the universal phenomenon of synchronization from finite-dimensional dynamical systems of ordinary differential equations (ODEs) to infinite-dimensional dynamical systems of partial differential equations (PDEs). By combining synchronization with controllability, they introduce the study of synchronization to the field of control and add new perspectives to the investigation of synchronization for systems of PDEs. With a focus on synchronization for a coupled system of wave equations, the text is divided into three parts corresponding to Dirichlet, Neumann, and coupled Robin boundary controls. Each part is then subdivided into chapters detailing exact boundary synchronization and approximate boundary synchronization, respectively. The core intention is to give artificial intervention to the evolution of state variables through appropriate boundary controls for realizing the synchronization in a finite time, creating a novel viewpoint into the investigation of synchronization for systems of partial differential equations, and revealing some essentially dissimilar characteristics from systems of ordinary differential equations. Primarily aimed at researchers and graduate students of applied mathematics and applied sciences, this text will particularly appeal to those interested in applied PDEs and control theory for distributed parameter systems.
Now available in English for the first time, Physics and Partial Differential Equations, Volume I bridges physics and applied mathematics in a manner that is easily accessible to readers with an undergraduate-level background in these disciplines. Readers who are more familiar with mathematics than physics will discover the connection between various physical and mechanical disciplines and their related mathematical models, which are described by partial differential equations (PDEs). The authors establish the fundamental equations for fields such as electrodynamics; fluid dynamics, magnetohydrodynamics, and reacting fluid dynamics; elastic, thermoelastic, and viscoelastic mechanics; the kinetic theory of gases; special relativity; and quantum mechanics. Readers who are more familiar with physics than mathematics will benefit from in-depth explanations of how PDEs work as effective mathematical tools to more clearly express and present the basic concepts of physics. The book describes the mathematical structures and features of these PDEs, including the types and basic characteristics of the equations, the behavior of solutions, and some commonly used approaches to solving PDEs. Each chapter can be read independently and includes exercises and references.
This book is a collection of lecture notes for the LIASFMA School and Workshop on 'Harmonic Analysis and Wave Equations' which was held on May 8-18, 2017 at Fudan University, in Shanghai, China. The aim of the LIASFMA School and Workshop is to bring together Chinese and French experts to discuss and dissect recent progress in these related fields; and to disseminate state of art, new knowledge and new concepts, to graduate students and junior researchers.The book provides the readers with a unique and valuable opportunity to learn from and communicate with leading experts in nonlinear wave-type equations. The readers will witness the major development with the introduction of modern harmonic analysis and related techniques.
This new volume introduces readers to the current topics of industrial and applied mathematics in China, with applications to material science, information science, mathematical finance and engineering. The authors utilize mathematics for the solution of problems. The purposes of the volume are to promote research in applied mathematics and computational science; further the application of mathematics to new methods and techniques useful in industry and science; and provide for the exchange of information between the mathematical, industrial, and scientific communities.
|
![]() ![]() You may like...
North American Economic Integration…
Norris C Clement, Gustavo del Castillo Vera, …
Paperback
R1,694
Discovery Miles 16 940
Estuarine Biogeochemical Dynamics of the…
Sourav Das, Tuhin Ghosh
Hardcover
R4,131
Discovery Miles 41 310
Scientific Publishing - From Vanity to…
Hans Roosendaal, Kasia Zalewska-Kurek, …
Paperback
R1,544
Discovery Miles 15 440
|