![]() |
![]() |
Your cart is empty |
||
Showing 1 - 3 of 3 matches in All Departments
The book provides an introduction to complex analysis for students with some familiarity with complex numbers from high school. The book consists of three parts. The first part comprises the basic core of a course in complex analysis for junior and senior undergraduates. The second part includes various more specialized topics as the argument principle, the Schwarz lemma and hyperbolic geometry, the Poisson integral, and the Riemann mapping theorem. The third part consists of a selection of topics designed to complete the coverage of all background necessary for passing PhD qualifying exams in complex analysis. Topics selected include Julia sets and the Mandelbrot set, Dirichlet series and the prime number theorem, and the uniformization theorem for Riemann surfaces. The three geometries, spherical, euclidean, and hyperbolic, are stressed. Exercises range from the very simple to the quite challenging, in all chapters. The book is based on lectures given over the years by the author at several places, particularly the Interuniversity Summer School at Perugia (Italy), and also UCLA, Brown University, Valencia (Spain), and La Plata (Argentina). A native of Minnesota, the author did his undergraduate work at Yale University and his graduate work at UC Berkeley. After spending some time at MIT and at the Universidad Nacional de La Plata (Argentina), he joined the faculty at UCLA in 1968. The author has published a number of research articles and several books on functional analysis and analytic function theory. he is currently involved in the California K-12 education scene.
A discussion of the properties of conformal mappings in the complex plane, closely related to the study of fractals and chaos. Indeed, the book ends in a detailed study of the famous Mandelbrot set, which describes very general properties of such mappings. Focusing on the analytic side of this contemporary subject, the text was developed from a course taught over several semesters and aims to help students and instructors to familiarize themselves with complex dynamics. Topics covered include: conformal and quasi-conformal mappings, fixed points and conjugations, basic rational iteration, classification of periodic components, critical points and expanding maps, some applications of conformal mappings, the local geometry of the Fatou set, and quadratic polynomials and the Mandelbrot set.
The book provides an introduction to complex analysis for students with some familiarity with complex numbers from high school. The first part comprises the basic core of a course in complex analysis for junior and senior undergraduates. The second part includes various more specialized topics as the argument principle the Poisson integral, and the Riemann mapping theorem. The third part consists of a selection of topics designed to complete the coverage of all background necessary for passing Ph.D. qualifying exams in complex analysis.
|
![]() ![]() You may like...
Proceedings of the Botanical Society of…
Botanical Society Of London
Paperback
R411
Discovery Miles 4 110
New Perspectives on Racial Identity…
Charmaine L. Wijeyesinghe, Bailey W. Jackson
Hardcover
R3,266
Discovery Miles 32 660
The Segovia Manuscript - A European…
Wolfgang Fuhrmann, Cristina Urchueguia
Hardcover
Frankie Manning - Ambassador of Lindy…
Frankie Manning, Cynthia Millman
Paperback
The Flower of Paradise - Marian Devotion…
David J Rothenberg
Hardcover
R1,633
Discovery Miles 16 330
|