![]() |
![]() |
Your cart is empty |
||
Showing 1 - 12 of 12 matches in All Departments
This book presents the state of the art in designing high-performance algorithms that combine simulation and optimization in order to solve complex optimization problems in science and industry, problems that involve time-consuming simulations and expensive multi-objective function evaluations. As traditional optimization approaches are not applicable per se, combinations of computational intelligence, machine learning, and high-performance computing methods are popular solutions. But finding a suitable method is a challenging task, because numerous approaches have been proposed in this highly dynamic field of research. That's where this book comes in: It covers both theory and practice, drawing on the real-world insights gained by the contributing authors, all of whom are leading researchers. Given its scope, if offers a comprehensive reference guide for researchers, practitioners, and advanced-level students interested in using computational intelligence and machine learning to solve expensive optimization problems.
Transportation systems in buildings are part of everyday life: whether ferrying people twenty storeys up to the office or moving luggage to the airport check-in, 21st-century man relies on them. Control of Traffic Systems in Buildings presents the state of the art in the analysis and control of transportation systems in buildings focusing primarily on elevator groups. The theory and design of passenger traffic and cargo transport systems are covered, together with actual operational examples and topics of special current interest such as: a [ noisy, on-line and algorithmic optimization; a [ simulation-based modeling of passengers and goods; a [ control of cooperative agent-oriented systems; a [ proposal for a benchmark to compare new control methods; a [ deployment and testing of transportation systems. Special attention is given to the techniques and uses of simulation and a working simulator is included that allows readers to explore the subject for themselves. The safe running of such automated traffic systems, though vital, gets rather taken for granted but workers in elevator control have pioneered the development of many modern control systems for employment in all sorts of traffic and scheduled systems being among the first to realize the potential of techniques like fuzzy logic, neural networks and genetic algorithms. For this reason, this exposition of recent work in in-building transport control will be of considerable interest to researchers and engineers in many areas of control, particularly those working in optimal or supervisory control, urban transportation systems and intelligent transport systems as well as to those directly interested in theelevator control systems under discussion.
In operations research and computer science it is common practice to evaluate the performance of optimization algorithms on the basis of computational results, and the experimental approach should follow accepted principles that guarantee the reliability and reproducibility of results. However, computational experiments differ from those in other sciences, and the last decade has seen considerable methodological research devoted to understanding the particular features of such experiments and assessing the related statistical methods. This book consists of methodological contributions on different scenarios of experimental analysis. The first part overviews the main issues in the experimental analysis of algorithms, and discusses the experimental cycle of algorithm development; the second part treats the characterization by means of statistical distributions of algorithm performance in terms of solution quality, runtime and other measures; and the third part collects advanced methods from experimental design for configuring and tuning algorithms on a specific class of instances with the goal of using the least amount of experimentation. The contributor list includes leading scientists in algorithm design, statistical design, optimization and heuristics, and most chapters provide theoretical background and are enriched with case studies. This book is written for researchers and practitioners in operations research and computer science who wish to improve the experimental assessment of optimization algorithms and, consequently, their design.
Experimentation is necessary - a purely theoretical approach is not reasonable. The new experimentalism, a development in the modern philosophy of science, considers that an experiment can have a life of its own. It provides a statistical methodology to learn from experiments, where the experimenter should distinguish between statistical significance and scientific meaning. This book introduces the new experimentalism in evolutionary computation, providing tools to understand algorithms and programs and their interaction with optimization problems. The book develops and applies statistical techniques to analyze and compare modern search heuristics such as evolutionary algorithms and particle swarm optimization. Treating optimization runs as experiments, the author offers methods for solving complex real-world problems that involve optimization via simulation, and he describes successful applications in engineering and industrial control projects. The book bridges the gap between theory and experiment by providing a self-contained experimental methodology and many examples, so it is suitable for practitioners and researchers and also for lecturers and students. It summarizes results from the author's consulting to industry and his experience teaching university courses and conducting tutorials at international conferences. The book will be supported online with downloads and exercises.
This open access book provides a wealth of hands-on examples that illustrate how hyperparameter tuning can be applied in practice and gives deep insights into the working mechanisms of machine learning (ML) and deep learning (DL) methods. The aim of the book is to equip readers with the ability to achieve better results with significantly less time, costs, effort and resources using the methods described here. The case studies presented in this book can be run on a regular desktop or notebook computer. No high-performance computing facilities are required. The idea for the book originated in a study conducted by Bartz & Bartz GmbH for the Federal Statistical Office of Germany (Destatis). Building on that study, the book is addressed to practitioners in industry as well as researchers, teachers and students in academia. The content focuses on the hyperparameter tuning of ML and DL algorithms, and is divided into two main parts: theory (Part I) and application (Part II). Essential topics covered include: a survey of important model parameters; four parameter tuning studies and one extensive global parameter tuning study; statistical analysis of the performance of ML and DL methods based on severity; and a new, consensus-ranking-based way to aggregate and analyze results from multiple algorithms. The book presents analyses of more than 30 hyperparameters from six relevant ML and DL methods, and provides source code so that users can reproduce the results. Accordingly, it serves as a handbook and textbook alike.
This book presents the state of the art in designing high-performance algorithms that combine simulation and optimization in order to solve complex optimization problems in science and industry, problems that involve time-consuming simulations and expensive multi-objective function evaluations. As traditional optimization approaches are not applicable per se, combinations of computational intelligence, machine learning, and high-performance computing methods are popular solutions. But finding a suitable method is a challenging task, because numerous approaches have been proposed in this highly dynamic field of research. That's where this book comes in: It covers both theory and practice, drawing on the real-world insights gained by the contributing authors, all of whom are leading researchers. Given its scope, if offers a comprehensive reference guide for researchers, practitioners, and advanced-level students interested in using computational intelligence and machine learning to solve expensive optimization problems.
In operations research and computer science it is common practice to evaluate the performance of optimization algorithms on the basis of computational results, and the experimental approach should follow accepted principles that guarantee the reliability and reproducibility of results. However, computational experiments differ from those in other sciences, and the last decade has seen considerable methodological research devoted to understanding the particular features of such experiments and assessing the related statistical methods. This book consists of methodological contributions on different scenarios of experimental analysis. The first part overviews the main issues in the experimental analysis of algorithms, and discusses the experimental cycle of algorithm development; the second part treats the characterization by means of statistical distributions of algorithm performance in terms of solution quality, runtime and other measures; and the third part collects advanced methods from experimental design for configuring and tuning algorithms on a specific class of instances with the goal of using the least amount of experimentation. The contributor list includes leading scientists in algorithm design, statistical design, optimization and heuristics, and most chapters provide theoretical background and are enriched with case studies. This book is written for researchers and practitioners in operations research and computer science who wish to improve the experimental assessment of optimization algorithms and, consequently, their design.
This book constitutes the refereed proceedings of the 13th International Conference on Parallel Problem Solving from Nature, PPSN 2013, held in Ljubljana, Slovenia, in September 2014. The total of 90 revised full papers were carefully reviewed and selected from 217 submissions. The meeting began with 7 workshops which offered an ideal opportunity to explore specific topics in evolutionary computation, bio-inspired computing and metaheuristics. PPSN XIII also included 9 tutorials. The papers are organized in topical sections on adaption, self-adaption and parameter tuning; classifier system, differential evolution and swarm intelligence; coevolution and artificial immune systems; constraint handling; dynamic and uncertain environments; estimation of distribution algorithms and metamodelling; genetic programming; multi-objective optimisation; parallel algorithms and hardware implementations; real world applications; and theory.
This book introduces the new experimentalism in evolutionary computation, providing tools to understand algorithms and programs and their interaction with optimization problems. It develops and applies statistical techniques to analyze and compare modern search heuristics such as evolutionary algorithms and particle swarm optimization. The book bridges the gap between theory and experiment by providing a self-contained experimental methodology and many examples.
This book constitutes the refereed proceedings of the 4th International Workshop on Hybrid Metaheuristics, HM 2007, held in Dortmund, Germany, in October 2007. The 14 revised full papers presented were carefully reviewed and selected from 37 submissions. The papers discuss specific aspects of hybridization of metaheuristics, hybrid metaheuristics design, development and testing. With increasing attention to methodological aspects, from both the empirical and theoretical sides, the papers show a representative sample of research in the field of hybrid metaheuristics. Some papers put special emphasis on the experimental analysis and statistical assessment of results, some are also an example of the integration of metaheuristics with mathematical programming, constraint satisfaction or machine learning techniques.
This open access book provides a wealth of hands-on examples that illustrate how hyperparameter tuning can be applied in practice and gives deep insights into the working mechanisms of machine learning (ML) and deep learning (DL) methods. The aim of the book is to equip readers with the ability to achieve better results with significantly less time, costs, effort and resources using the methods described here. The case studies presented in this book can be run on a regular desktop or notebook computer. No high-performance computing facilities are required. The idea for the book originated in a study conducted by Bartz & Bartz GmbH for the Federal Statistical Office of Germany (Destatis). Building on that study, the book is addressed to practitioners in industry as well as researchers, teachers and students in academia. The content focuses on the hyperparameter tuning of ML and DL algorithms, and is divided into two main parts: theory (Part I) and application (Part II). Essential topics covered include: a survey of important model parameters; four parameter tuning studies and one extensive global parameter tuning study; statistical analysis of the performance of ML and DL methods based on severity; and a new, consensus-ranking-based way to aggregate and analyze results from multiple algorithms. The book presents analyses of more than 30 hyperparameters from six relevant ML and DL methods, and provides source code so that users can reproduce the results. Accordingly, it serves as a handbook and textbook alike.
Transportation systems in buildings are part of everyday life: whether ferrying people twenty storeys up to the office or moving luggage at the airport, 21st-century society relies on them. This book presents the latest in analysis and control of transportation systems in buildings focusing primarily on elevator groups. The theory and design of passenger and cargo transport systems are covered, with operational examples and topics of special interest.
|
![]() ![]() You may like...
Kirstenbosch - A Visitor's Guide
Colin Paterson-Jones, John Winter
Paperback
|