Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 25 of 28 matches in All Departments
Adequate health and health care is no longer possible without proper data supervision from modern machine learning methodologies like cluster models, neural networks, and other data mining methodologies. The current book is the first publication of a complete overview of machine learning methodologies for the medical and health sector, and it was written as a training companion, and as a must-read, not only for physicians and students, but also for any one involved in the process and progress of health and health care. In this second edition the authors have removed the textual errors from the first edition. Also, the improved tables from the first edition, have been replaced with the original tables from the software programs as applied. This is, because, unlike the former, the latter were without error, and readers were better familiar with them. The main purpose of the first edition was, to provide stepwise analyses of the novel methods from data examples, but background information and clinical relevance information may have been somewhat lacking. Therefore, each chapter now contains a section entitled "Background Information". Machine learning may be more informative, and may provide better sensitivity of testing than traditional analytic methods may do. In the second edition a place has been given for the use of machine learning not only to the analysis of observational clinical data, but also to that of controlled clinical trials. Unlike the first edition, the second edition has drawings in full color providing a helpful extra dimension to the data analysis. Several machine learning methodologies not yet covered in the first edition, but increasingly important today, have been included in this updated edition, for example, negative binomial and Poisson regressions, sparse canonical analysis, Firth's bias adjusted logistic analysis, omics research, eigenvalues and eigenvectors.
Machine learning is concerned with the analysis of large data and multiple variables. However, it is also often more sensitive than traditional statistical methods to analyze small data. The first volume reviewed subjects like optimal scaling, neural networks, factor analysis, partial least squares, discriminant analysis, canonical analysis, and fuzzy modeling. This second volume includes various clustering models, support vector machines, Bayesian networks, discrete wavelet analysis, genetic programming, association rule learning, anomaly detection, correspondence analysis, and other subjects. Both the theoretical bases and the step by step analyses are described for the benefit of non-mathematical readers. Each chapter can be studied without the need to consult other chapters. Traditional statistical tests are, sometimes, priors to machine learning methods, and they are also, sometimes, used as contrast tests. To those wishing to obtain more knowledge of them, we recommend to additionally study (1) Statistics Applied to Clinical Studies 5th Edition 2012, (2) SPSS for Starters Part One and Two 2012, and (3) Statistical Analysis of Clinical Data on a Pocket Calculator Part One and Two 2012, written by the same authors, and edited by Springer, New York.
Machine learning is concerned with the analysis of large data and multiple variables. It is also often more sensitive than traditional statistical methods to analyze small data. The first and second volumes reviewed subjects like optimal scaling, neural networks, factor analysis, partial least squares, discriminant analysis, canonical analysis, fuzzy modeling, various clustering models, support vector machines, Bayesian networks, discrete wavelet analysis, association rule learning, anomaly detection, and correspondence analysis. This third volume addresses more advanced methods and includes subjects like evolutionary programming, stochastic methods, complex sampling, optional binning, Newton's methods, decision trees, and other subjects. Both the theoretical bases and the step by step analyses are described for the benefit of non-mathematical readers. Each chapter can be studied without the need to consult other chapters. Traditional statistical tests are, sometimes, priors to machine learning methods, and they are also, sometimes, used as contrast tests. To those wishing to obtain more knowledge of them, we recommend to additionally study (1) Statistics Applied to Clinical Studies 5th Edition 2012, (2) SPSS for Starters Part One and Two 2012, and (3) Statistical Analysis of Clinical Data on a Pocket Calculator Part One and Two 2012, written by the same authors, and edited by Springer, New York.
Machine learning is a novel discipline concerned with the analysis of large and multiple variables data. It involves computationally intensive methods, like factor analysis, cluster analysis, and discriminant analysis. It is currently mainly the domain of computer scientists, and is already commonly used in social sciences, marketing research, operational research and applied sciences. It is virtually unused in clinical research. This is probably due to the traditional belief of clinicians in clinical trials where multiple variables are equally balanced by the randomization process and are not further taken into account. In contrast, modern computer data files often involve hundreds of variables like genes and other laboratory values, and computationally intensive methods are required. This book was written as a hand-hold presentation accessible to clinicians, and as a must-read publication for those new to the methods.
The core principles of statistical analysis are too easily forgotten in today's world of powerful computers and time-saving algorithms. This step-by-step primer takes researchers who lack the confidence to conduct their own analyses right back to basics, allowing them to scrutinize their own data through a series of rapidly executed reckonings on a simple pocket calculator. A range of easily navigable tutorials facilitate the reader's assimilation of the techniques, while a separate chapter on next generation Flash prepares them for future developments in the field. This practical volume also contains tips on how to deny hackers access to Flash internet sites. An ideal companion to the author's co-authored works on statistical analysis for Springer such as Statistics Applied to Clinical Trials, this monograph will help researchers understand the processes involved in interpreting clinical data, as well as being a necessary prerequisite to mastering more advanced statistical techniques. "" The principles of statistical analysis are easily forgotten in today's world of time-saving algorithms. This step-by-step primer takes researchers back to basics, enabling them to examine their own data through a series of sums on a simple pocket calculator."
In medical and health care the scientific method is little used, and statistical software programs are experienced as black box programs producing lots of p-values, but little answers to scientific questions. The pocket calculator analyses appears to be, particularly, appreciated, because they enable medical and health professionals and students for the first time to understand the scientific methods of statistical reasoning and hypothesis testing. So much so, that it can start something like a new dimension in their professional world. In addition, a number of statistical methods like power calculations and required sample size calculations can be performed more easily on a pocket calculator, than using a software program. Also, there are some specific advantages of the pocket calculator method. You better understand what you are doing. The pocket calculator works faster, because far less steps have to be taken, averages can be used. The current nonmathematical book is complementary to the nonmathematical "SPSS for Starters and 2nd Levelers" (Springer Heidelberg Germany 2015, from the same authors), and can very well be used as its daily companion.
A unique point of this book is its low threshold, textually simple and at the same time full of self-assessment opportunities. Other unique points are the succinctness of the chapters with 3 to 6 pages, the presence of entire-commands-texts of the statistical methodologies reviewed and the fact that dull scientific texts imposing an unnecessary burden on busy and jaded professionals have been left out. For readers requesting more background, theoretical and mathematical information a note section with references is in each chapter. The first edition in 2010 was the first publication of a complete overview of SPSS methodologies for medical and health statistics. Well over 100,000 copies of various chapters were sold within the first year of publication. Reasons for a rewrite were four. First, many important comments from readers urged for a rewrite. Second, SPSS has produced many updates and upgrades, with relevant novel and improved methodologies. Third, the authors felt that the chapter texts needed some improvements for better readability: chapters have now been classified according the outcome data helpful for choosing your analysis rapidly, a schematic overview of data, and explanatory graphs have been added. Fourth, current data are increasingly complex and many important methods for analysis were missing in the first edition. For that latter purpose some more advanced methods seemed unavoidable, like hierarchical loglinear methods, gamma and Tweedie regressions and random intercept analyses. In order for the contents of the book to remain covered by the title, the authors renamed the book: SPSS for Starters and 2nd Levelers. Special care was, nonetheless, taken to keep things as simple as possible, simple menu commands are given. The arithmetic is still of a no-more-than high-school level. Step-by-step analyses of different statistical methodologies are given with the help of 60 SPSS data files available through the internet. Because of the lack of time of this busy group of people, the authors have given every effort to produce a text as succinct as possible.
This textbook consists of ten chapters, and is a must-read to all medical and health professionals, who already have basic knowledge of how to analyze their clinical data, but still, wonder, after having done so, why procedures were performed the way they were. The book is also a must-read to those who tend to submerge in the flood of novel statistical methodologies, as communicated in current clinical reports, and scientific meetings. In the past few years, the HOW-SO of current statistical tests has been made much more simple than it was in the past, thanks to the abundance of statistical software programs of an excellent quality. However, the WHY-SO may have been somewhat under-emphasized. For example, why do statistical tests constantly use unfamiliar terms, like probability distributions, hypothesis testing, randomness, normality, scientific rigor, and why are Gaussian curves so hard, and do they make non-mathematicians getting lost all the time? The book will cover the WHY-SOs.
In medical and health care the scientific method is little used, and statistical software programs are experienced as black box programs producing lots of p-values, but little answers to scientific questions. The pocket calculator analyses appears to be, particularly, appreciated, because they enable medical and health professionals and students for the first time to understand the scientific methods of statistical reasoning and hypothesis testing. So much so, that it can start something like a new dimension in their professional world. In addition, a number of statistical methods like power calculations and required sample size calculations can be performed more easily on a pocket calculator, than using a software program. Also, there are some specific advantages of the pocket calculator method. You better understand what you are doing. The pocket calculator works faster, because far less steps have to be taken, averages can be used. The current nonmathematical book is complementary to the nonmathematical "SPSS for Starters and 2nd Levelers" (Springer Heidelberg Germany 2015, from the same authors), and can very well be used as its daily companion.
Machine learning is concerned with the analysis of large data and multiple variables. It is also often more sensitive than traditional statistical methods to analyze small data. The first and second volumes reviewed subjects like optimal scaling, neural networks, factor analysis, partial least squares, discriminant analysis, canonical analysis, fuzzy modeling, various clustering models, support vector machines, Bayesian networks, discrete wavelet analysis, association rule learning, anomaly detection, and correspondence analysis. This third volume addresses more advanced methods and includes subjects like evolutionary programming, stochastic methods, complex sampling, optional binning, Newton's methods, decision trees, and other subjects. Both the theoretical bases and the step by step analyses are described for the benefit of non-mathematical readers. Each chapter can be studied without the need to consult other chapters. Traditional statistical tests are, sometimes, priors to machine learning methods, and they are also, sometimes, used as contrast tests. To those wishing to obtain more knowledge of them, we recommend to additionally study (1) Statistics Applied to Clinical Studies 5th Edition 2012, (2) SPSS for Starters Part One and Two 2012, and (3) Statistical Analysis of Clinical Data on a Pocket Calculator Part One and Two 2012, written by the same authors, and edited by Springer, New York.
A unique point of this book is its low threshold, textually simple and at the same time full of self-assessment opportunities. Other unique points are the succinctness of the chapters with 3 to 6 pages, the presence of entire-commands-texts of the statistical methodologies reviewed and the fact that dull scientific texts imposing an unnecessary burden on busy and jaded professionals have been left out. For readers requesting more background, theoretical and mathematical information a note section with references is in each chapter. The first edition in 2010 was the first publication of a complete overview of SPSS methodologies for medical and health statistics. Well over 100,000 copies of various chapters were sold within the first year of publication. Reasons for a rewrite were four. First, many important comments from readers urged for a rewrite. Second, SPSS has produced many updates and upgrades, with relevant novel and improved methodologies. Third, the authors felt that the chapter texts needed some improvements for better readability: chapters have now been classified according the outcome data helpful for choosing your analysis rapidly, a schematic overview of data, and explanatory graphs have been added. Fourth, current data are increasingly complex and many important methods for analysis were missing in the first edition. For that latter purpose some more advanced methods seemed unavoidable, like hierarchical loglinear methods, gamma and Tweedie regressions and random intercept analyses. In order for the contents of the book to remain covered by the title, the authors renamed the book: SPSS for Starters and 2nd Levelers. Special care was, nonetheless, taken to keep things as simple as possible, simple menu commands are given. The arithmetic is still of a no-more-than high-school level. Step-by-step analyses of different statistical methodologies are given with the help of 60 SPSS data files available through the internet. Because of the lack of time of this busy group of people, the authors have given every effort to produce a text as succinct as possible.
The current book is the first publication of a complete overview of machine learning methodologies for the medical and health sector. It was written as a training companion and as a must-read, not only for physicians and students, but also for any one involved in the process and progress of health and health care. In eighty chapters eighty different machine learning methodologies are reviewed, in combination with data examples for self-assessment. Each chapter can be studied without the need to consult other chapters. The amount of data stored in the world's databases doubles every 20 months, and clinicians, familiar with traditional statistical methods, are at a loss to analyze them. Traditional methods have, indeed, difficulty to identify outliers in large datasets, and to find patterns in big data and data with multiple exposure / outcome variables. In addition, analysis-rules for surveys and questionnaires, which are currently common methods of data collection, are, essentially, missing. Fortunately, the new discipline, machine learning, is able to cover all of these limitations. So far medical professionals have been rather reluctant to use machine learning. Also, in the field of diagnosis making, few doctors may want a computer checking them, are interested in collaboration with a computer or with computer engineers. Adequate health and health care will, however, soon be impossible without proper data supervision from modern machine learning methodologies like cluster models, neural networks and other data mining methodologies. Each chapter starts with purposes and scientific questions. Then, step-by-step analyses, using data examples, are given. Finally, a paragraph with conclusion, and references to the corresponding sites of three introductory textbooks, previously written by the same authors, is given.
Machine learning is concerned with the analysis of large data and multiple variables. However, it is also often more sensitive than traditional statistical methods to analyze small data. The first volume reviewed subjects like optimal scaling, neural networks, factor analysis, partial least squares, discriminant analysis, canonical analysis, and fuzzy modeling. This second volume includes various clustering models, support vector machines, Bayesian networks, discrete wavelet analysis, genetic programming, association rule learning, anomaly detection, correspondence analysis, and other subjects. Both the theoretical bases and the step by step analyses are described for the benefit of non-mathematical readers. Each chapter can be studied without the need to consult other chapters. Traditional statistical tests are, sometimes, priors to machine learning methods, and they are also, sometimes, used as contrast tests. To those wishing to obtain more knowledge of them, we recommend to additionally study (1) Statistics Applied to Clinical Studies 5th Edition 2012, (2) SPSS for Starters Part One and Two 2012, and (3) Statistical Analysis of Clinical Data on a Pocket Calculator Part One and Two 2012, written by the same authors, and edited by Springer, New York.
Machine learning is a novel discipline concerned with the analysis of large and multiple variables data. It involves computationally intensive methods, like factor analysis, cluster analysis, and discriminant analysis. It is currently mainly the domain of computer scientists, and is already commonly used in social sciences, marketing research, operational research and applied sciences. It is virtually unused in clinical research. This is probably due to the traditional belief of clinicians in clinical trials where multiple variables are equally balanced by the randomization process and are not further taken into account. In contrast, modern computer data files often involve hundreds of variables like genes and other laboratory values, and computationally intensive methods are required. This book was written as a hand-hold presentation accessible to clinicians, and as a must-read publication for those new to the methods.
This small book addresses different kinds of datafiles, as commonly encountered in clinical research, and their data-analysis on SPSS Software. Some 15 years ago serious statistical analyses were conducted by specialist statisticians using ma- frame computers. Nowadays, there is ready access to statistical computing using personal computers or laptops, and this practice has changed boundaries between basic statistical methods that can be conveniently carried out on a pocket calculator and more advanced statistical methods that can only be executed on a computer. Clinical researchers currently perform basic statistics without professional help from a statistician, including t-tests and chi-square tests. With help of user-friendly software the step from such basic tests to more complex tests has become smaller, and more easy to take. It is our experience as masters' and doctorate class teachers of the European College of Pharmaceutical Medicine (EC Socrates Project Lyon France) that s- dents are eager to master adequate command of statistical software for that purpose. However, doing so, albeit easy, still takes 20-50 steps from logging in to the final result, and all of these steps have to be learned in order for the procedures to be successful.
The amount of data medical databases doubles every 20 months, and physicians are at a loss to analyze them. Also, traditional data analysis has difficulty to identify outliers and patterns in big data and data with multiple exposure / outcome variables and analysis-rules for surveys and questionnaires, currently common methods of data collection, are, essentially, missing. Consequently, proper data-based health decisions will soon be impossible. Obviously, it is time that medical and health professionals mastered their reluctance to use machine learning methods and this was the main incentive for the authors to complete a series of three textbooks entitled "Machine Learning in Medicine Part One, Two and Three, Springer Heidelberg Germany, 2012-2013", describing in a nonmathematical way over sixty machine learning methodologies, as available in SPSS statistical software and other major software programs. Although well received, it came to our attention that physicians and students often lacked time to read the entire books, and requested a small book, without background information and theoretical discussions and highlighting technical details. For this reason we produced a 100 page cookbook, entitled "Machine Learning in Medicine - Cookbook One", with data examples available at extras.springer.com for self-assessment and with reference to the above textbooks for background information. Already at the completion of this cookbook we came to realize, that many essential methods were not covered. The current volume, entitled "Machine Learning in Medicine - Cookbook Two" is complementary to the first and also intended for providing a more balanced view of the field and thus, as a must-read not only for physicians and students, but also for any one involved in the process and progress of health and health care. Similarly to Machine Learning in Medicine - Cookbook One, the current work will describe stepwise analyses of over twenty machine learning methods, that are, likewise, based on the three major machine learning methodologies: Cluster methodologies (Chaps. 1-3) Linear methodologies (Chaps. 4-11) Rules methodologies (Chaps. 12-20) In extras.springer.com the data files of the examples are given, as well as XML (Extended Mark up Language), SPS (Syntax) and ZIP (compressed) files for outcome predictions in future patients. In addition to condensed versions of the methods, fully described in the above three textbooks, an introduction is given to SPSS Modeler (SPSS' data mining workbench) in the Chaps. 15, 18, 19, while improved statistical methods like various automated analyses and Monte Carlo simulation models are in the Chaps. 1, 5, 7 and 8. We should emphasize that all of the methods described have been successfully applied in practice by the authors, both of them professors in applied statistics and machine learning at the European Community College of Pharmaceutical Medicine in Lyon France. We recommend the current work not only as a training companion to investigators and students, because of plenty of step by step analyses given, but also as a brief introductory text to jaded clinicians new to the methods. For the latter purpose, background and theoretical information have been replaced with the appropriate references to the above textbooks, while single sections addressing "general purposes", "main scientific questions" and "conclusions" are given in place. Finally, we will demonstrate that modern machine learning performs sometimes better than traditional statistics does. Machine learning may have little options for adjusting confounding and interaction, but you can add propensity scores and interaction variables to almost any machine learning method.
The authors have taught statistics and given statistics workshops in France and the Netherlands for almost 4 years by now. Their material, mainly on power point, consists of 12 lectures that have been continuously changed and improved by interaction with various audiences. For the purpose of the current book simple English text has been added to the formulas and figures, and the power points sheets have been rewritten in the format given by Kluwer Academic Publishers. Cartoons have been removed, since this is not so relevant for the transmission of thought through a written text, and at the end of each lecture (chapter) a representative number of questions and exercises for self-assessment have been added. At the end of the book detailed answers to the questions and exercises per lecture are given. The book has been produced with the same size and frontpage as the textbook "Statistics Applied To Clinical Trials" by the same authors and edited by same publishers ( 2nd Edition, DordrechtiBostonlLondon, 2002), and can be applied together with the current self-assessment book or separately. The current self-assessment book is different from the texbook, because it focuses on the most important aspects rather than trying to be complete. So, it does not deal with all of the subjects assessed in the texbook. Instead, it repeats on and on the principle things that are needed for every analysis, and it gives many examples that are further explained by arrows in the figures.
The current textbook has been written as a help to medical / health professionals and students for the study of modern Bayesian statistics, where posterior and prior odds have been replaced with posterior and prior likelihood distributions. Why may likelihood distributions better than normal distributions estimate uncertainties of statistical test results? Nobody knows for sure, and the use of likelihood distributions instead of normal distributions for the purpose has only just begun, but already everybody is trying and using them. SPSS statistical software version 25 (2017) has started to provide a combined module entitled Bayesian Statistics including almost all of the modern Bayesian tests (Bayesian t-tests, analysis of variance (anova), linear regression, crosstabs etc.). Modern Bayesian statistics is based on biological likelihoods, and may better fit clinical data than traditional tests based normal distributions do. This is the first edition to systematically imply modern Bayesian statistics in traditional clinical data analysis. This edition also demonstrates that Markov Chain Monte Carlo procedures laid out as Bayesian tests provide more robust correlation coefficients than traditional tests do. It also shows that traditional path statistics are both textually and conceptionally like Bayes theorems, and that structural equations models computed from them are the basis of multistep regressions, as used with causal Bayesian networks.
Regression analysis of cause effect relationships is increasingly the core of medical and health research. This work is a 2nd edition of a 2017 pretty complete textbook and tutorial for students as well as recollection / update bench and help desk for professionals. It came to the authors' attention, that information of history, background, and purposes, of the regression methods addressed were scanty. Lacking information about all of that has now been entirely covered. The editorial art work of the first edition, however pretty, was less appreciated by some readerships, than were the original output sheets from the statistical programs as used. Therefore, the editorial art work has now been systematically replaced with original statistical software tables and graphs for the benefit of an improved usage and understanding of the methods. In the past few years, professionals have been flooded with big data. The Covid-19 pandemic gave cause for statistical software companies to foster novel analytic programs better accounting outliers and skewness. Novel fields of regression analysis adequate for such data, like sparse canonical regressions and quantile regressions, have been included.
The current textbook has been written as a help to medical / health professionals and students for the study of modern Bayesian statistics, where posterior and prior odds have been replaced with posterior and prior likelihood distributions. Why may likelihood distributions better than normal distributions estimate uncertainties of statistical test results? Nobody knows for sure, and the use of likelihood distributions instead of normal distributions for the purpose has only just begun, but already everybody is trying and using them. SPSS statistical software version 25 (2017) has started to provide a combined module entitled Bayesian Statistics including almost all of the modern Bayesian tests (Bayesian t-tests, analysis of variance (anova), linear regression, crosstabs etc.). Modern Bayesian statistics is based on biological likelihoods, and may better fit clinical data than traditional tests based normal distributions do. This is the first edition to systematically imply modern Bayesian statistics in traditional clinical data analysis. This edition also demonstrates that Markov Chain Monte Carlo procedures laid out as Bayesian tests provide more robust correlation coefficients than traditional tests do. It also shows that traditional path statistics are both textually and conceptionally like Bayes theorems, and that structural equations models computed from them are the basis of multistep regressions, as used with causal Bayesian networks.
This textbook consists of ten chapters, and is a must-read to all medical and health professionals, who already have basic knowledge of how to analyze their clinical data, but still, wonder, after having done so, why procedures were performed the way they were. The book is also a must-read to those who tend to submerge in the flood of novel statistical methodologies, as communicated in current clinical reports, and scientific meetings. In the past few years, the HOW-SO of current statistical tests has been made much more simple than it was in the past, thanks to the abundance of statistical software programs of an excellent quality. However, the WHY-SO may have been somewhat under-emphasized. For example, why do statistical tests constantly use unfamiliar terms, like probability distributions, hypothesis testing, randomness, normality, scientific rigor, and why are Gaussian curves so hard, and do they make non-mathematicians getting lost all the time? The book will cover the WHY-SOs.
Unique features of the book involve the following. 1.This book is the third volume of a three volume series of cookbooks entitled "Machine Learning in Medicine - Cookbooks One, Two, and Three". No other self-assessment works for the medical and health care community covering the field of machine learning have been published to date. 2. Each chapter of the book can be studied without the need to consult other chapters, and can, for the readership's convenience, be downloaded from the internet. Self-assessment examples are available at extras.springer.com. 3. An adequate command of machine learning methodologies is a requirement for physicians and other health workers, particularly now, because the amount of medical computer data files currently doubles every 20 months, and, because, soon, it will be impossible for them to take proper data-based health decisions without the help of machine learning. 4. Given the importance of knowledge of machine learning in the medical and health care community, and the current lack of knowledge of it, the readership will consist of any physician and health worker. 5. The book was written in a simple language in order to enhance readability not only for the advanced but also for the novices. 6. The book is multipurpose, it is an introduction for ignorant, a primer for the inexperienced, and a self-assessment handbook for the advanced. 7. The book, was, particularly, written for jaded physicians and any other health care professionals lacking time to read the entire series of three textbooks. 8. Like the other two cookbooks it contains technical descriptions and self-assessment examples of 20 important computer methodologies for medical data analysis, and it, largely, skips the theoretical and mathematical background. 9. Information of theoretical and mathematical background of the methods described are displayed in a "notes" section at the end of each chapter. 10.Unlike traditional statistical methods, the machine learning methodologies are able to analyze big data including thousands of cases and hundreds of variables. 11. The medical and health care community is little aware of the multidimensional nature of current medical data files, and experimental clinical studies are not helpful to that aim either, because these studies, usually, assume that subgroup characteristics are unimportant, as long as the study is randomized. This is, of course, untrue, because any subgroup characteristic may be vital to an individual at risk. 12. To date, except for a three volume introductary series on the subject entitled "Machine Learning in Medicine Part One, Two, and Thee, 2013, Springer Heidelberg Germany" from the same authors, and the current cookbook series, no books on machine learning in medicine have been published. 13. Another unique feature of the cookbooks is that it was jointly written by two authors from different disciplines, one being a clinician/clinical pharmacologist, one being a mathematician/biostatistician. 14. The authors have also jointly been teaching at universities and institutions throughout Europe and the USA for the past 20 years. 15. The authors have managed to cover the field of medical data analysis in a nonmathematical way for the benefit of medical and health workers. 16. The authors already successfully published many statistics textbooks and self-assessment books, e.g., the 67 chapter textbook entitled "Statistics Applied to Clinical Studies 5th Edition, 2012, Springer Heidelberg Germany" with downloads of 62,826 copies. 17. The current cookbook makes use, in addition to SPSS statistical software, of various free calculators from the internet, as well as the Konstanz Information Miner (Knime), a widely approved free machine learning package, and the free Weka Data Mining package from New Zealand. 18. The above software packages with hundreds of nodes, the basic processing units including virtually all of the statistical and data mining methods, can be used not only for data analyses, but also for appropriate data storage. 19. The current cookbook shows, particularly, for those with little affinity to value tables, that data mining in the form of a visualization process is very well feasible, and often more revealing than traditional statistics. 20.The Knime and Weka data miners uses widely available excel data files. 21. In current clinical research prospective cohort studies are increasingly replacing the costly controlled clinical trials, and modern machine learning methodologies like probit and tobit regressions as well as neural networks, Bayesian networks, and support vector machines prove to better fit their analysis than traditional statistical methods do. 22. The current cookbook not only includes concise descriptions of standard machine learning methods, but also of more recent methods like the linear machine learning models using ordinal and loglinear regression. 23. Machine learning tends to increasingly use evolutionary operation methodologies. Also this subject has been covered. 24. All of the methods described have been applied in the authors' own research prior to this publication.
The amount of data in medical databases doubles every 20 months, and physicians are at a loss to analyze them. Also, traditional methods of data analysis have difficulty to identify outliers and patterns in big data and data with multiple exposure / outcome variables and analysis-rules for surveys and questionnaires, currently common methods of data collection, are, essentially, missing. Obviously, it is time that medical and health professionals mastered their reluctance to use machine learning and the current 100 page cookbook should be helpful to that aim. It covers in a condensed form the subjects reviewed in the 750 page three volume textbook by the same authors, entitled Machine Learning in Medicine I-III (ed. by Springer, Heidelberg, Germany, 2013) and was written as a hand-hold presentation and must-read publication. It was written not only to investigators and students in the fields, but also to jaded clinicians new to the methods and lacking time to read the entire textbooks. General purposes and scientific questions of the methods are only briefly mentioned, but full attention is given to the technical details. The two authors, a statistician and current president of the International Association of Biostatistics and a clinician and past-president of the American College of Angiology, provide plenty of step-by-step analyses from their own research and data files for self-assessment are available at extras.springer.com. From their experience the authors demonstrate that machine learning performs sometimes better than traditional statistics does. Machine learning may have little options for adjusting confounding and interaction, but you can add propensity scores and interaction variables to almost any machine learning method."
The first part of this title contained all statistical tests that are relevant for starters on SPSS, and included standard parametric and non-parametric tests for continuous and binary variables, regression methods, trend tests, and reliability and validity assessments of diagnostic tests. The current part 2 of this title reviews multistep methods, multivariate models, assessments of missing data, performance of diagnostic tests, meta-regression, Poisson regression, confounding and interaction, and survival analyses using log tests and segmented time-dependent Cox regression. Methods for assessing non linear models, data seasonality, distribution free methods, including Monte Carlo methods and artificial intelligence, and robust tests are also covered. Each method of testing is explained using a data example from clinical practice, including every step in SPSS, and a text with interpretations of the results and hints convenient for data reporting. In order to facilitate the use of this cookbook the data files of the examples is made available by the editor through extras.springer.com. Both part 1 and 2 of this title contain a minima amount of text and maximal technical details, but we believe that this property will not refrain students from mastering the SPSS software systematics, and that, instead, it will be a help to that aim. Yet, we recommend that it will used together with the textbook "Statistics Applied to Clinical Trials" (5th edition, Springer, Dordrecht 2012) and the e-books "Statistics on a Pocket Calculator Part 1 and 2 (Springer, Dordrecht, 2011 and 2012) from the same authors.
The first part of this title contained all statistical tests relevant to starting clinical investigations, and included tests for continuous and binary data, power, sample size, multiple testing, variability, confounding, interaction, and reliability. The current part 2 of this title reviews methods for handling missing data, manipulated data, multiple confounders, predictions beyond observation, uncertainty of diagnostic tests, and the problems of outliers. Also robust tests, non-linear modeling , goodness of fit testing, Bhatacharya models, item response modeling, superiority testing, variability testing, binary partitioning for CART (classification and regression tree) methods, meta-analysis, and simple tests for incident analysis and unexpected observations at the workplace and reviewed. Each test method is reported together with (1) a data example from practice, (2) all steps to be taken using a scientific pocket calculator, and (3) the main results and their interpretation. Although several of the described methods can also be carried out with the help of statistical software, the latter procedure will be considerably slower. Both part 1 and 2 of this title consist of a minimum of text and this will enhance the process of mastering the methods. Yet the authors recommend that for a better understanding of the test procedures the books be used together with the same authors' textbook "Statistics Applied to Clinical Studies" 5th edition edited 2012, by Springer Dordrecht Netherlands. More complex data files like data files with multiple treatment modalities or multiple predictor variables can not be analyzed with a pocket calculator. We recommend that the small books "SPSS for starters", Part 1 and 2 (Springer, Dordrecht, 2010, and 2012) from the same authors be used as a complementary help for the readers' benefit. |
You may like...
|