Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 4 of 4 matches in All Departments
Japan is a tiny country that occupies only 0.25% of the world's total land area. However, this small country is the world's third largest in economy: the Japanese GDP is roughly equivalent to the sum of any two major countries in Europe as of 2012. This book is a first attempt to ask leaders of top Japanese companies, such as Toyota, about their thoughts on mathematics. The topics range from mathematical problems in specific areas (e.g., exploration of natural resources, communication networks, finance) to mathematical strategy that helps a leader who has to weigh many different issues and make decisions in a timely manner, and even to mathematical literacy that ensures quality control. The reader may notice that every article reflects the authors' way of life and thinking, which can be evident in even one sentence. This book is an enlarged English edition of the Japanese book What Mathematics Can Do for You: Essays and Tips from Japanese Industry Leaders. In this edition we have invited the contributions of three mathematicians who have been working to expand and strengthen the interaction between mathematics and industry. The role of mathematics is usually invisible when it is applied effectively and smoothly in science and technology, and mathematical strategy is often hidden when it is used properly and successfully. The business leaders in successful top Japanese companies are well aware of this invisible feature of mathematics in applications aside from the intrinsic depth of mathematics. What Mathematics Can Do for You ultimately provides the reader an opportunity to notice what is hidden but key to business strategy.
This volume uses a unified approach to representation theory and automorphic forms. It collects papers, written by leading mathematicians, that track recent progress in the expanding fields of representation theory and automorphic forms and their association with number theory and differential geometry. Topics include: Automorphic forms and distributions, modular forms, visible-actions, Dirac cohomology, holomorphic forms, harmonic analysis, self-dual representations, and Langlands Functoriality Conjecture, Both graduate students and researchers will find inspiration in this volume.
Japan is a tiny country that occupies only 0.25% of the world's total land area. However, this small country is the world's third largest in economy: the Japanese GDP is roughly equivalent to the sum of any two major countries in Europe as of 2012. This book is a first attempt to ask leaders of top Japanese companies, such as Toyota, about their thoughts on mathematics. The topics range from mathematical problems in specific areas (e.g., exploration of natural resources, communication networks, finance) to mathematical strategy that helps a leader who has to weigh many different issues and make decisions in a timely manner, and even to mathematical literacy that ensures quality control. The reader may notice that every article reflects the authors' way of life and thinking, which can be evident in even one sentence. This book is an enlarged English edition of the Japanese book What Mathematics Can Do for You: Essays and Tips from Japanese Industry Leaders. In this edition we have invited the contributions of three mathematicians who have been working to expand and strengthen the interaction between mathematics and industry. The role of mathematics is usually invisible when it is applied effectively and smoothly in science and technology, and mathematical strategy is often hidden when it is used properly and successfully. The business leaders in successful top Japanese companies are well aware of this invisible feature of mathematics in applications aside from the intrinsic depth of mathematics. What Mathematics Can Do for You ultimately provides the reader an opportunity to notice what is hidden but key to business strategy.
This work provides the first classification theory of matrix-valued symmetry breaking operators from principal series representations of a reductive group to those of its subgroup.The study of symmetry breaking operators (intertwining operators for restriction) is an important and very active research area in modern representation theory, which also interacts with various fields in mathematics and theoretical physics ranging from number theory to differential geometry and quantum mechanics.The first author initiated a program of the general study of symmetry breaking operators. The present book pursues the program by introducing new ideas and techniques, giving a systematic and detailed treatment in the case of orthogonal groups of real rank one, which will serve as models for further research in other settings.In connection to automorphic forms, this work includes a proof for a multiplicity conjecture by Gross and Prasad for tempered principal series representations in the case (SO(n + 1, 1), SO(n, 1)). The authors propose a further multiplicity conjecture for nontempered representations.Viewed from differential geometry, this seminal work accomplishes the classification of all conformally covariant operators transforming differential forms on a Riemanniann manifold X to those on a submanifold in the model space (X, Y) = (Sn, Sn-1). Functional equations and explicit formulae of these operators are also established.This book offers a self-contained and inspiring introduction to the analysis of symmetry breaking operators for infinite-dimensional representations of reductive Lie groups. This feature will be helpful for active scientists and accessible to graduate students and young researchers in representation theory, automorphic forms, differential geometry, and theoretical physics.
|
You may like...
|