![]() |
![]() |
Your cart is empty |
||
Showing 1 - 5 of 5 matches in All Departments
This advanced undergraduate textbook is based on a one-semester course on single variable calculus that the author has been teaching at San Diego State University for many years. The aim of this classroom-tested book is to deliver a rigorous discussion of the concepts and theorems that are dealt with informally in the first two semesters of a beginning calculus course. As such, students are expected to gain a deeper understanding of the fundamental concepts of calculus, such as limits (with an emphasis on - definitions), continuity (including an appreciation of the difference between mere pointwise and uniform continuity), the derivative (with rigorous proofs of various versions of L'Hopital's rule) and the Riemann integral (discussing improper integrals in-depth, including the comparison and Dirichlet tests). Success in this course is expected to prepare students for more advanced courses in real and complex analysis and this book will help to accomplish this. The first semester of advanced calculus can be followed by a rigorous course in multivariable calculus and an introductory real analysis course that treats the Lebesgue integral and metric spaces, with special emphasis on Banach and Hilbert spaces.
This advanced undergraduate textbook is based on a one-semester course on single variable calculus that the author has been teaching at San Diego State University for many years. The aim of this classroom-tested book is to deliver a rigorous discussion of the concepts and theorems that are dealt with informally in the first two semesters of a beginning calculus course. As such, students are expected to gain a deeper understanding of the fundamental concepts of calculus, such as limits (with an emphasis on - definitions), continuity (including an appreciation of the difference between mere pointwise and uniform continuity), the derivative (with rigorous proofs of various versions of L'Hopital's rule) and the Riemann integral (discussing improper integrals in-depth, including the comparison and Dirichlet tests). Success in this course is expected to prepare students for more advanced courses in real and complex analysis and this book will help to accomplish this. The first semester of advanced calculus can be followed by a rigorous course in multivariable calculus and an introductory real analysis course that treats the Lebesgue integral and metric spaces, with special emphasis on Banach and Hilbert spaces.
Calculus III is the third and final volume of the three-volume calculus sequence by Tunc Geveci. The series is designed for the usual three-semester calculus sequence that the majority of science and engineering majors in the United States are required to take. The distinguishing features of the book are the focus on the concepts, essential functions and formulas of calculus and the effective use of graphics as an integral part of the exposition. Formulas that are not significant and exercises that involve artificial algebraic difficulties are avoided. The three-volume calculus sequence is organized as follows: Calculus I covers the usual topics of the first semester: limits, continuity, the derivative, the integral and special functions such as exponential functions, logarithms and inverse trigonometric functions. Calculus II covers techniques and applications of integration, improper integrals, infinite series, linear and separable first-order differential equations, parametrized curves and polar coordinates. Calculus III covers vectors, the differential calculus of functions of several variables, multiple integrals, line integrals, surface integrals, Green's Theorem, Stokes' Theorem and Gauss' Theorem.
Calculus II is the second volume of the three-volume calculus sequence by Tunc Geveci. The series is designed for the usual three-semester calculus sequence that the majority of science and engineering majors in the United States are required to take. The distinguishing features of the book are the focus on the concepts, essential functions and formulas of calculus and the effective use of graphics as an integral part of the exposition. Formulas that are not significant and exercises that involve artificial algebraic difficulties are avoided. The three-volume calculus sequence is organized as follows: Calculus I covers the usual topics of the first semester: limits, continuity, the derivative, the integral and special functions such as exponential functions, logarithms and inverse trigonometric functions. Calculus II covers techniques and applications of integration, improper integrals, infinite series, linear and separable first-order differential equations, parametrized curves and polar coordinates. Calculus III covers vectors, the differential calculus of functions of several variables, multiple integrals, line integrals, surface integrals, Green's Theorem, Stokes' Theorem and Gauss' Theorem.
Calculus I is the first volume of the three-volume calculus sequence by Tunc Geveci. The series is designed for the usual three-semester calculus sequence that the majority of science and engineering majors in the United States are required to take.The distinguishing features of the book are the focus on the concepts, essential functions and formulas of calculus and the effective use of graphics as an integral part of the exposition. Formulas that are not significant and exercises that involve artificial algebraic difficulties are avoided. The three-volume calculus sequence is organized as follows: Calculus I covers the usual topics of the first semester: limits, continuity, the derivative, the integral and special functions such as exponential functions, logarithms and inverse trigonometric functions. Calculus II covers techniques and applications of integration, improper integrals, infinite series, linear and separable first-order differential equations, parametrized curves and polar coordinates. Calculus III covers vectors, the differential calculus of functions of several variables, multiple integrals, line integrals, surface integrals, Green's Theorem, Stokes' Theorem and Gauss' Theorem.
|
![]() ![]() You may like...
The Records of Living Officers of the…
Lewis Randolph 1847-1910 Hamersly
Hardcover
R1,039
Discovery Miles 10 390
Judaism and St. Paul - Two Essays
C. G. (Claude Goldsmid) Montefiore
Hardcover
R929
Discovery Miles 9 290
A Treatise on Naval Architecture
Richard Worsam 1837-1897 Meade
Hardcover
R865
Discovery Miles 8 650
|