0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R1,000 - R2,500 (1)
  • -
Status
Brand

Showing 1 - 1 of 1 matches in All Departments

Deep Learning for Genomics - Data-driven approaches for genomics applications in life sciences and biotechnology (Paperback):... Deep Learning for Genomics - Data-driven approaches for genomics applications in life sciences and biotechnology (Paperback)
Upendra Kumar Devisetty
R1,059 Discovery Miles 10 590 Ships in 10 - 15 working days

Learn concepts, methodologies, and applications of deep learning for building predictive models from complex genomics data sets to overcome challenges in the life sciences and biotechnology industries Key Features Apply deep learning algorithms to solve real-world problems in the field of genomics Extract biological insights from deep learning models built from genomic datasets Train, tune, evaluate, deploy, and monitor deep learning models for enabling predictions in genomics Book DescriptionDeep learning has shown remarkable promise in the field of genomics; however, there is a lack of a skilled deep learning workforce in this discipline. This book will help researchers and data scientists to stand out from the rest of the crowd and solve real-world problems in genomics by developing the necessary skill set. Starting with an introduction to the essential concepts, this book highlights the power of deep learning in handling big data in genomics. First, you'll learn about conventional genomics analysis, then transition to state-of-the-art machine learning-based genomics applications, and finally dive into deep learning approaches for genomics. The book covers all of the important deep learning algorithms commonly used by the research community and goes into the details of what they are, how they work, and their practical applications in genomics. The book dedicates an entire section to operationalizing deep learning models, which will provide the necessary hands-on tutorials for researchers and any deep learning practitioners to build, tune, interpret, deploy, evaluate, and monitor deep learning models from genomics big data sets. By the end of this book, you'll have learned about the challenges, best practices, and pitfalls of deep learning for genomics. What you will learn Discover the machine learning applications for genomics Explore deep learning concepts and methodologies for genomics applications Understand supervised deep learning algorithms for genomics applications Get to grips with unsupervised deep learning with autoencoders Improve deep learning models using generative models Operationalize deep learning models from genomics datasets Visualize and interpret deep learning models Understand deep learning challenges, pitfalls, and best practices Who this book is forThis deep learning book is for machine learning engineers, data scientists, and academicians practicing in the field of genomics. It assumes that readers have intermediate Python programming knowledge, basic knowledge of Python libraries such as NumPy and Pandas to manipulate and parse data, Matplotlib, and Seaborn for visualizing data, along with a base in genomics and genomic analysis concepts.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Piranha USB Charge Dock for PlayStation…
R217 Discovery Miles 2 170
Air Fryer - Herman's Top 100 Recipes
Herman Lensing Paperback R350 R235 Discovery Miles 2 350
Shatter Me - 9-Book Collection
Tahereh Mafi Paperback R1,699 R1,143 Discovery Miles 11 430
Efekto 77300-G Nitrile Gloves (M)(Green)
R63 Discovery Miles 630
Aerolatte Cappuccino Art Stencils (Set…
R110 R95 Discovery Miles 950
Marco Prestige Laptop Bag (Black)
R676 Discovery Miles 6 760
Loot
Nadine Gordimer Paperback  (2)
R205 R164 Discovery Miles 1 640
Loot
Nadine Gordimer Paperback  (2)
R205 R164 Discovery Miles 1 640
Joseph Joseph Index Mini (Graphite)
R642 Discovery Miles 6 420
She Said
Carey Mulligan, Zoe Kazan, … DVD R93 Discovery Miles 930

 

Partners