Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 3 of 3 matches in All Departments
Written by a team of experts that has been working together for several years in the context of a research network involving international institutions, this book brings several applications related to smart material systems such as vibration and noise control, structural health monitoring, energy harvesting and shape memory alloys. Furthermore, this book also provides basic knowledge on the fundamentals of smart material systems and structures. Consequently, the present title serves as an important resource for advanced undergraduate and graduate students. In addition, it serves as a guide for engineers and scientists working with smart structures and materials both with an application and basic research perspective. Smart material systems and structures represent a new paradigm which is increasing the capabilities of engineering systems. Adaptability and versatility are some important aspects related to such systems. In brief, research on smart materials is characterized by synergistically combining different physical features, such as mechanical, electrical, chemical, and magnetic. As a result, smart material technologies have a huge potential to enhance the performance of engineering structures opening unlimited opportunities to innovation and economic benefits.
Written by a team of experts that has been working together for several years in the context of a research network involving international institutions, this book brings several applications related to smart material systems such as vibration and noise control, structural health monitoring, energy harvesting and shape memory alloys. Furthermore, this book also provides basic knowledge on the fundamentals of smart material systems and structures. Consequently, the present title serves as an important resource for advanced undergraduate and graduate students. In addition, it serves as a guide for engineers and scientists working with smart structures and materials both with an application and basic research perspective. Smart material systems and structures represent a new paradigm which is increasing the capabilities of engineering systems. Adaptability and versatility are some important aspects related to such systems. In brief, research on smart materials is characterized by synergistically combining different physical features, such as mechanical, electrical, chemical, and magnetic. As a result, smart material technologies have a huge potential to enhance the performance of engineering structures opening unlimited opportunities to innovation and economic benefits.
This book is aimed at undergraduate and graduate students in applied mathematics or computer science, as a tool for solving real-world design problems. The present work covers fundamentals in multi-objective optimization and applications in mathematical and engineering system design using a new optimization strategy, namely the Self-Adaptive Multi-objective Optimization Differential Evolution (SA-MODE) algorithm. This strategy is proposed in order to reduce the number of evaluations of the objective function through dynamic update of canonical Differential Evolution parameters (population size, crossover probability and perturbation rate). The methodology is applied to solve mathematical functions considering test cases from the literature and various engineering systems design, such as cantilevered beam design, biochemical reactor, crystallization process, machine tool spindle design, rotary dryer design, among others.
|
You may like...
|