![]() |
![]() |
Your cart is empty |
||
Showing 1 - 3 of 3 matches in All Departments
This book is an original first approach to quantum physics, the core of modern physics. It combines the competence of a well-known researcher in quantum information science and the freshness in style of two high school students. Quantum physics is known to be challenging for two reasons: it describes counter-intuitive phenomena and employs rather advanced mathematics. The description of "traditional" quantum phenomena (the structure of atoms and molecules, the properties of solids, the zoology of sub-atomic particles) does indeed involve the whole formalism. However, some other striking phenomena, somehow the most "typically quantum" ones, can be described using only high school mathematical skills. This approach exploits this fact, thus making it possible for a beginner to tackle mind-boggling experiments like teleportation and the violation of Bell's inequalities, and practice notions like superposition, entanglement and decoherence.
This book is an original first approach to quantum physics, the core of modern physics. It combines the competence of a well-known researcher in quantum information science and the freshness in style of two high school students. Quantum physics is known to be challenging for two reasons: it describes counter-intuitive phenomena and employs rather advanced mathematics. The description of "traditional" quantum phenomena (the structure of atoms and molecules, the properties of solids, the zoology of sub-atomic particles) does indeed involve the whole formalism. However, some other striking phenomena, somehow the most "typically quantum" ones, can be described using only high school mathematical skills. This approach exploits this fact, thus making it possible for a beginner to tackle mind-boggling experiments like teleportation and the violation of Bell's inequalities, and practice notions like superposition, entanglement and decoherence.
The development of quantum technologies has seen a tremendous upsurge in recent years, and the theory of Bell nonlocality has been key in making these technologies possible. Bell nonlocality is one of the most striking discoveries triggered by quantum theory. It states that in some situations, measurements of physical systems do not reveal pre-existing properties; rather, the property is created by the measurement itself. In 1964, John Bell demonstrated that the predictions of quantum theory are incompatible with the assumption that outcomes are predetermined. This phenomenon has been observed beyond any doubt in the last decades. It is an observation that is here to stay, even if quantum theory were to be replaced in the future. Besides having fundamental implications, nonlocality is so specific that it can be used to develop and certify reliable quantum devices. This book is a logical, rather than historical, presentation of nonlocality and its applications. Part 1 opens with a survey of the meaning of Bell nonlocality and its interpretations, then delves into the mathematical formalisation of this phenomenon, and finally into its manifestations in quantum theory. Part 2 is devoted to the possibility of using the evidence of nonlocality for certification of devices for quantum technologies. Part 3 explores some of the extensions and consequences of nonlocality for the foundations of physics.
|
![]() ![]() You may like...
A History of the King's Flight and the…
Brian Sowerby, Jack Frost
Paperback
R1,002
Discovery Miles 10 020
|