![]() |
![]() |
Your cart is empty |
||
Showing 1 - 4 of 4 matches in All Departments
In a presentation that formalizes what makes up decision based design, Decision Based Design defines the major concepts that go into product realization. It presents all major concepts in design decision making in an integrated way and covers the fundamentals of decision analysis in engineering design. It also trains engineers to understand the impacts of design decision. The author teaches concepts in demand modeling and customer preference modeling and provides examples. This book teaches most fundamental concepts encountered in engineering design like: concept generation, multiattribute decision analysis, reliability engineering, design optimization, simulation, and demand modeling. The book provides the tools engineering practitioners and researchers need to first understand that engineering design is best viewed as a sequence of decisions made by the stakeholders involved and then apply the decision based design concepts in practice. It teaches fundamental concepts encountered in engineering design, such as concept generation, multiattribute decision analysis, reliability engineering, design optimization, simulation, and demand modeling. This book helps students and practitioners understand that there is a rigorous way to analyze engineering decisions taking into consideration all the potential technical and business impacts of their decisions. It can be used in its entirety to teach a course in decision based design, while selected chapters can also be used to cover courses in subdisciplines that make up decision based design.
Today's business environment involves design decisions with significant uncertainty. To succeed, decision-makers should replace deterministic methods with a risk-based approach that accounts for the decision maker's risk tolerance. In many problems, it is impractical to collect data because rare or one-time events are involved. Therefore, we need a methodology to model uncertainty and make choices when we have limited information. This methodology must use all available information and rely only on assumptions that are supported by evidence. This book explains theories and tools to represent uncertainty using both data and expert judgment. It teaches the reader how to make design or business decisions when there is limited information with these tools. Readers will learn a structured, risk-based approach, which is based on common sense principles, for design and business decisions. These decisions are consistent with the decision-maker's risk attitude. The book is exceptionally suited as educational material because it uses everyday language and real-life examples to elucidate concepts. It demonstrates how these concepts touch our lives through many practical examples, questions and exercises. These are designed to help students learn that first they should understand a problem and then establish a strategy for solving it, instead of using trial-and-error approaches. This volume is intended for undergraduate and graduate courses in mechanical, civil, industrial, aerospace, and ocean engineering and for researchers and professionals in these disciplines. It will also benefit managers and students in business administration who want to make good decisions with limited information.
Reliability methods are becoming increasingly popular in engineering design because they help build safer and more efficient products than traditional deterministic methods. A principal challenge in using these methods in practical design problems is to model uncertainty when little data is available and the underlying mechanism of uncertain events is unknown. There is a need for an integrated presentation of tools for modeling uncertainty and making design decisions under severe uncertainty, which bridges the gap between theory and practice for methods for design under uncertainty. This work presents and compare the most important theories for modeling uncertainty and explains what tools are most suitable for a given design problem. It illustrates how to solve practical design problems in the aerospace and automotive engineering industries with a balanced approach explaining both the theoretical foundations of methods and their application to engineering design. The numerous examples in each section will help to appreciate the importance of design under uncertainty and the theoretical developments of the methods. Readers will learn a structured, risk-based approach for design under uncertainty when limited information is available, which tools are available and which to select and apply given a design decision problem. They will further understand how to improve their overall performance using a structured, risk-based approach for design under uncertainty. Intended for mechanical and civil engineers working in aerospace, automotive, civil, shipbuilding and power engineering, and for graduate level courses and students in reliability analysis and design and decision-making under uncertainty.
In a presentation that formalizes what makes up decision based design, Decision Based Design defines the major concepts that go into product realization. It presents all major concepts in design decision making in an integrated way and covers the fundamentals of decision analysis in engineering design. It also trains engineers to understand the impacts of design decision. The author teaches concepts in demand modeling and customer preference modeling and provides examples. This book teaches most fundamental concepts encountered in engineering design like: concept generation, multiattribute decision analysis, reliability engineering, design optimization, simulation, and demand modeling. The book provides the tools engineering practitioners and researchers need to first understand that engineering design is best viewed as a sequence of decisions made by the stakeholders involved and then apply the decision based design concepts in practice. It teaches fundamental concepts encountered in engineering design, such as concept generation, multiattribute decision analysis, reliability engineering, design optimization, simulation, and demand modeling. This book helps students and practitioners understand that there is a rigorous way to analyze engineering decisions taking into consideration all the potential technical and business impacts of their decisions. It can be used in its entirety to teach a course in decision based design, while selected chapters can also be used to cover courses in subdisciplines that make up decision based design.
|
![]() ![]() You may like...
The Chemistry of Textile Fibres
Robert R Mather, Roger H. Wardman
Hardcover
R1,370
Discovery Miles 13 700
|