Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 4 of 4 matches in All Departments
This book covers the physical properties of nanosized ferroics, also called nanoferroics. Nanoferroics are an important class of ceramic materials that substitute conventional ceramic ferroics in modern electronic devices. They include ferroelectric, ferroelastic, magnetic and multiferroic nanostructured materials. The phase transitions and properties of these nanostructured ferroics are strongly affected by the geometric confinement originating from surfaces and interfaces. As a consequence, these materials exhibit a behavior different from the corresponding bulk crystalline, ceramic and powder ferroics. This monograph offers comprehensive coverage of size- and shape-dependent effects at the nanoscale; the specific properties that these materials have been shown to exhibit; the theoretical approaches that have been successful in describing the size-dependent effects observed experimentally; and the technological aspects of many chemical and physico-chemical nanofabrication methods relevant to making nanoferroic materials and composites. The book will be of interest to an audience of condensed matter physicists, material scientists and engineers, working on ferroic nanostructured materials, their fundamentals, fabrication and device applications.
This book explains modern and interesting physics in heavy-fermion (HF) compounds to graduate students and researchers in condensed matter physics. It presents a theory of heavy-fermion (HF) compounds such as HF metals, quantum spin liquids, quasicrystals and two-dimensional Fermi systems. The basic low-temperature properties and the scaling behavior of the compounds are described within the framework of the theory of fermion condensation quantum phase transition (FCQPT). Upon reading the book, the reader finds that HF compounds with quite different microscopic nature exhibit the same non-Fermi liquid behavior, while the data collected on very different HF systems have a universal scaling behavior, and these compounds are unexpectedly uniform despite their diversity. For the reader's convenience, the analysis of compounds is carried out in the context of salient experimental results. The numerous calculations of the non-Fermi liquid behavior, thermodynamic, relaxation and transport properties, being in good agreement with experimental facts, offer the reader solid grounds to learn the theory's applications. Finally, the reader will learn that FCQPT develops unexpectedly simple, yet completely good description of HF compounds.
This book explains modern and interesting physics in heavy-fermion (HF) compounds to graduate students and researchers in condensed matter physics. It presents a theory of heavy-fermion (HF) compounds such as HF metals, quantum spin liquids, quasicrystals and two-dimensional Fermi systems. The basic low-temperature properties and the scaling behavior of the compounds are described within the framework of the theory of fermion condensation quantum phase transition (FCQPT). Upon reading the book, the reader finds that HF compounds with quite different microscopic nature exhibit the same non-Fermi liquid behavior, while the data collected on very different HF systems have a universal scaling behavior, and these compounds are unexpectedly uniform despite their diversity. For the reader's convenience, the analysis of compounds is carried out in the context of salient experimental results. The numerous calculations of the non-Fermi liquid behavior, thermodynamic, relaxation and transport properties, being in good agreement with experimental facts, offer the reader solid grounds to learn the theory's applications. Finally, the reader will learn that FCQPT develops unexpectedly simple, yet completely good description of HF compounds.
This book covers the physical properties of nanosized ferroics, also called nanoferroics. Nanoferroics are an important class of ceramic materials that substitute conventional ceramic ferroics in modern electronic devices. They include ferroelectric, ferroelastic, magnetic and multiferroic nanostructured materials. The phase transitions and properties of these nanostructured ferroics are strongly affected by the geometric confinement originating from surfaces and interfaces. As a consequence, these materials exhibit a behavior different from the corresponding bulk crystalline, ceramic and powder ferroics. This monograph offers comprehensive coverage of size- and shape-dependent effects at the nanoscale; the specific properties that these materials have been shown to exhibit; the theoretical approaches that have been successful in describing the size-dependent effects observed experimentally; and the technological aspects of many chemical and physico-chemical nanofabrication methods relevant to making nanoferroic materials and composites. The book will be of interest to an audience of condensed matter physicists, material scientists and engineers, working on ferroic nanostructured materials, their fundamentals, fabrication and device applications.
|
You may like...
|