Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 8 of 8 matches in All Departments
2 Radiant sets 236 3 Co-radiant sets 239 4 Radiative and co-radiative sets 241 5 Radiant sets with Lipschitz continuous Minkowski gauges 245 6 Star-shaped sets and their kernels 249 7 Separation 251 8 Abstract convex star-shaped sets 255 References 260 11 DIFFERENCES OF CONVEX COMPACTA AND METRIC SPACES OF CON- 263 VEX COMPACTA WITH APPLICATIONS: A SURVEY A. M. Rubinov, A. A. Vladimirov 1 Introduction 264 2 Preliminaries 264 3 Differences of convex compact sets: general approach 266 4 Metric projections and corresponding differences (one-dimensional case) 267 5 The *-difference 269 6 The Demyanov difference 271 7 Geometric and inductive definitions of the D-difference 273 8 Applications to DC and quasidifferentiable functions 276 9 Differences of pairs of set-valued mappings with applications to quasidiff- entiability 278 10 Applications to approximate subdifferentials 280 11 Applications to the approximation of linear set-valued mappings 281 12 The Demyanov metric 282 13 The Bartels-Pallaschke metric 284 14 Hierarchy of the three norms on Qn 285 15 Derivatives 287 16 Distances from convex polyhedra and convergence of convex polyhedra 289 17 Normality of convex sets 290 18 D-regular sets 291 19 Variable D-regular sets 292 20 Optimization 293 References 294 12 CONVEX APPROXIMATORS.
Nonsmooth energy functions govern phenomena which occur frequently in nature and in all areas of life. They constitute a fascinating subject in mathematics and permit the rational understanding of yet unsolved or partially solved questions in mechanics, engineering and economics. This is the first book to provide a complete and rigorous presentation of the quasidifferentiability approach to nonconvex, possibly nonsmooth, energy functions, of the derivation and study of the corresponding variational expressions in mechanics, engineering and economics, and of their numerical treatment. The new variational formulations derived are illustrated by many interesting numerical problems. The techniques presented will permit the reader to check any solution obtained by other heuristic techniques for nonconvex, nonsmooth energy problems. A civil, mechanical or aeronautical engineer can find in the book the only existing mathematically sound technique for the formulation and study of nonconvex, nonsmooth energy problems. Audience: The book will be of interest to pure and applied mathematicians, physicists, researchers in mechanics, civil, mechanical and aeronautical engineers, structural analysts and software developers. It is also suitable for graduate courses in nonlinear mechanics, nonsmooth analysis, applied optimization, control, calculus of variations and computational mechanics.
This volume contains a collection of papers based on lectures and presentations delivered at the International Conference on Constructive Nonsmooth Analysis (CNSA) held in St. Petersburg (Russia) from June 18-23, 2012. This conference was organized to mark the 50th anniversary of the birth of nonsmooth analysis and nondifferentiable optimization and was dedicated to J.-J. Moreau and the late B.N. Pshenichnyi, A.M. Rubinov, and N.Z. Shor, whose contributions to NSA and NDO remain invaluable. The first four chapters of the book are devoted to the theory of nonsmooth analysis. Chapters 5-8 contain new results in nonsmooth mechanics and calculus of variations. Chapters 9-13 are related to nondifferentiable optimization, and the volume concludes with four chapters containing interesting and important historical chapters, including tributes to three giants of nonsmooth analysis, convexity, and optimization: Alexandr Alexandrov, Leonid Kantorovich, and Alex Rubinov. The last chapter provides an overview and important snapshots of the 50-year history of convex analysis and optimization.
This volume contains a collection of papers based on lectures and presentations delivered at the International Conference on Constructive Nonsmooth Analysis (CNSA) held in St. Petersburg (Russia) from June 18-23, 2012. This conference was organized to mark the 50th anniversary of the birth of nonsmooth analysis and nondifferentiable optimization and was dedicated to J.-J. Moreau and the late B.N. Pshenichnyi, A.M. Rubinov, and N.Z. Shor, whose contributions to NSA and NDO remain invaluable. The first four chapters of the book are devoted to the theory of nonsmooth analysis. Chapters 5-8 contain new results in nonsmooth mechanics and calculus of variations. Chapters 9-13 are related to nondifferentiable optimization, and the volume concludes with four chapters containing interesting and important historical chapters, including tributes to three giants of nonsmooth analysis, convexity, and optimization: Alexandr Alexandrov, Leonid Kantorovich, and Alex Rubinov. The last chapter provides an overview and important snapshots of the 50-year history of convex analysis and optimization.
Nonsmooth energy functions govern phenomena which occur frequently in nature and in all areas of life. They constitute a fascinating subject in mathematics and permit the rational understanding of yet unsolved or partially solved questions in mechanics, engineering and economics. This is the first book to provide a complete and rigorous presentation of the quasidifferentiability approach to nonconvex, possibly nonsmooth, energy functions, of the derivation and study of the corresponding variational expressions in mechanics, engineering and economics, and of their numerical treatment. The new variational formulations derived are illustrated by many interesting numerical problems. The techniques presented will permit the reader to check any solution obtained by other heuristic techniques for nonconvex, nonsmooth energy problems. A civil, mechanical or aeronautical engineer can find in the book the only existing mathematically sound technique for the formulation and study of nonconvex, nonsmooth energy problems. Audience: The book will be of interest to pure and applied mathematicians, physicists, researchers in mechanics, civil, mechanical and aeronautical engineers, structural analysts and software developers. It is also suitable for graduate courses in nonlinear mechanics, nonsmooth analysis, applied optimization, control, calculus of variations and computational mechanics.
This volume contains the edited texts of the lect. nres presented at the International School of Mathematics devoted to Nonsmonth Optimization, held from . June 20 to July I, 1988. The site for the meeting was the "Ettore ~Iajorana" Centre for Sci- entific Culture in Erice, Sicily. In the tradition of these meetings the main purpose was to give the state-of-the-art of an important and growing field of mathematics, and to stimulate interactions between finite-dimensional and infinite-dimensional op- timization. The School was attended by approximately 80 people from 23 countries; in particular it was possible to have some distinguished lecturers from the SO\*iet Union, whose research institutions are here gratt*fnlly acknowledged. Besides the lectures, several seminars were delivered; a special s*~ssion was devoted to numerical computing aspects. The result was a broad exposure. gi *. ring a deep knowledge of the present research tendencies in the field. We wish to express our appreciation to all the participants. Special mention 5hould be made of the Ettorc;. . Iajorana Centre in Erice, which helped provide a stimulating and rewarding experience, and of its staff which was fundamental for the success of the meeting. j\,loreover, WP want to extend uur deep appreci
This volume collects the expanded notes of four series of lectures given on the occasion of the CIME course on Nonlinear Optimization held in Cetraro, Italy, from July 1 to 7, 2007. The Nonlinear Optimization problem of main concern here is the problem n of determining a vector of decision variables x ? R that minimizes (ma- n mizes) an objective function f(.): R ? R, when x is restricted to belong n to some feasible setF? R, usually described by a set of equality and - n n m equality constraints: F = {x ? R: h(x)=0, h(.): R ? R; g(x) ? 0, n p g(.): R ? R }; of course it is intended that at least one of the functions f, h, g is nonlinear. Although the problem canbe stated in verysimpleterms, its solution may result very di?cult due to the analytical properties of the functions involved and/or to the number n, m, p of variables and constraints. On the other hand, the problem has been recognized to be of main relevance in engineering, economics, and other applied sciences, so that a great lot of e?ort has been devoted to develop methods and algorithms able to solve the problem even in its more di?cult and large instances. The lectures have been given by eminent scholars, who contributed to a great extent to the development of Nonlinear Optimization theory, methods and algorithms. Namely, they are: - Professor Immanuel M."
The International Institute for Applied Systems Analysis (IIASA) in Laxenburg, Austria, has been involved in research on nondifferentiable optimization since 1976. IIASA-based East-West cooperation in this field has been very productive, leading to many important theoretical, algorithmic and applied results. Nondifferentiable optimi zation has now become a recognized and rapidly developing branch of mathematical programming. To continue this tradition, and to review recent developments in this field, IIASA held a Workshop on Nondifferentiable Optimization in Sopron (Hungary) in September 1964. The aims of the Workshop were: 1. To discuss the state-of-the-art of nondifferentiable optimization (NDO), its origins and motivation; 2. To compare-various algorithms; 3. To evaluate existing mathematical approaches, their applications and potential; 4. To extend and deepen industrial and other applications of NDO. The following topics were considered in separate sessions: General motivation for research in NDO: nondifferentiability in applied problems, nondifferentiable mathematical models. Numerical methods for solving nondifferentiable optimization problems, numerical experiments, comparisons and software. Nondifferentiable analysis: various generalizations of the concept of subdifferen tials. Industrial and other applications. This volume contains selected papers presented at the Workshop. It is divided into four sections, based on the above topics: I. Concepts in Nonsmooth Analysis II. Multicriteria Optimization and Control Theory III. Algorithms and Optimization Methods IV. Stochastic Programming and Applications We would like to thank the International Institute for Applied Systems Analysis, particularly Prof. V. Kaftanov and Prof. A.B. Kurzhanski, for their support in organiz ing this meeting."
|
You may like...
|