Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 24 of 24 matches in All Departments
This volume is dedicated to the eminent Georgian mathematician Roland Duduchava on the occasion of his 70th birthday. It presents recent results on Toeplitz, Wiener-Hopf, and pseudodifferential operators, boundary value problems, operator theory, approximation theory, and reflects the broad spectrum of Roland Duduchava's research. The book is addressed to a wide audience of pure and applied mathematicians.
'I never heard of "Ugli?cation," Alice ventured to say. 'What is it?'' Lewis Carroll, "Alice in Wonderland" Subject and motivation. The present book is devoted to a theory of m- tipliers in spaces of di?erentiable functions and its applications to analysis, partial di?erential and integral equations. By a multiplier acting from one functionspaceS intoanotherS, wemeanafunctionwhichde?nesabounded 1 2 linear mapping ofS intoS by pointwise multiplication. Thus with any pair 1 2 of spacesS, S we associate a third one, the space of multipliersM(S?S ) 1 2 1 2 endowed with the norm of the operator of multiplication. In what follows, the role of the spacesS andS is played by Sobolev spaces, Bessel potential 1 2 spaces, Besov spaces, and the like. The Fourier multipliers are not dealt with in this book. In order to emp- size the di?erence between them and the multipliers under consideration, we attach Sobolev's name to the latter. By coining the term Sobolev multipliers we just hint at various spaces of di?erentiable functions of Sobolev's type, being fully aware that Sobolev never worked on multipliers. After all, Fourier never did either.
In the present bookthe conditions are studied for the semi-boundedness of partial differential operators which is interpreted in different ways. Nowadays one knows rather much about "L"2-semibounded differential and pseudo-differential operators, although their complete characterization in analytic terms causes difficulties even for rather simple operators. Until recently almost nothing was known about analytic characterizations of semi-boundedness for differential operators in other Hilbert function spaces and in Banach function spaces. The goal of the present book is to partially fill this gap. Various types of semi-boundedness are considered and some relevant conditions which are either necessary and sufficient or best possible in a certain sense are given. Most of the results reported in this book are due to the authors."
An equation of the form ??(x)? K(x,y)?(y)d?(y)= f(x),x?X, (1) X is called a linear integral equation. Here (X,?)isaspacewith ?-?nite measure ? and ? is a complex parameter, K and f are given complex-valued functions. The function K is called the kernel and f is the right-hand side. The equation is of the ?rst kind if ? = 0 and of the second kind if ? = 0. Integral equations have attracted a lot of attention since 1877 when C. Neumann reduced the Dirichlet problem for the Laplace equation to an integral equation and solved the latter using the method of successive approximations. Pioneering results in application of integral equations in the theory of h- monic functions were obtained by H. Poincar' e, G. Robin, O. H.. older, A.M. L- punov, V.A. Steklov, and I. Fredholm. Further development of the method of boundary integral equations is due to T. Carleman, G. Radon, G. Giraud, N.I. Muskhelishvili,S.G.Mikhlin,A.P.Calderon,A.Zygmundandothers. Aclassical application of integral equations for solving the Dirichlet and Neumann boundary value problems for the Laplace equation is as follows. Solutions of boundary value problemsaresoughtin the formof the doublelayerpotentialW? andofthe single layer potentialV? . In the case of the internal Dirichlet problem and the ext- nal Neumann problem, the densities of corresponding potentials obey the integral equation ???+W? = g (2) and ? ???+ V? = h (3) ?n respectively, where ?/?n is the derivative with respect to the outward normal to the contour.
Sobolev spaces play an outstanding role in modern analysis, in particular, in the theory of partial differential equations and its applications in mathematical physics. They form an indispensable tool in approximation theory, spectral theory, differential geometry etc. The theory of these spaces is of interest in itself being a beautiful domain of mathematics. The present volume includes basics on Sobolev spaces, approximation and extension theorems, embedding and compactness theorems, their relations with isoperimetric and isocapacitary inequalities, capacities with applications to spectral theory of elliptic differential operators as well as pointwise inequalities for derivatives. The selection of topics is mainly influenced by the author's involvement in their study, a considerable part of the text is a report on his work in the field. Part of this volume first appeared in German as three booklets of Teubner-Texte zur Mathematik (1979, 1980). In the Springer volume "Sobolev Spaces", published in English in 1985, the material was expanded and revised. The present 2nd edition is enhanced by many recent results and it includes new applications to linear and nonlinear partial differential equations. New historical comments, five new chapters and a significantly augmented list of references aim to create a broader and modern view of the area.
For the first time in the mathematical literature this
two-volume work introduces a unified and general approach to the
asymptotic analysis of elliptic boundary value problems in
singularly perturbed domains. While the first volume is devoted to
perturbations of the boundary near isolated singular points, this
second volume treats singularities of the boundary in higher
dimensions as well as nonlocal perturbations.
For the first time in the mathematical literature this
two-volume work introduces a unified and general approach to the
asymptotic analysis of elliptic boundary value problems in
singularly perturbed domains. This first volume is devoted to
domains whose boundary is smooth in the neighborhood of finitely
many conical points. In particular, the theory encompasses the
important case of domains with small holes. The second volume, on
the other hand, treats perturbations of the boundary in higher
dimensions as well as nonlocal perturbations.
The first systematic, self-contained presentation of a theory of arbitrary order ODEs with unbounded operator coefficients in a Hilbert or Banach space. Developed over the last 10 years by the authors, it deals with conditions of solvability, classes of uniqueness, estimates for solutions and asymptotic representations of solutions at infinity.
Sobolev spaces become the established and universal language of partial differential equations and mathematical analysis. Among a huge variety of problems where Sobolev spaces are used, the following important topics are the focus of this volume: boundary value problems in domains with singularities, higher order partial differential equations, local polynomial approximations, inequalities in Sobolev-Lorentz spaces, function spaces in cellular domains, the spectrum of a Schrodinger operator with negative potential and other spectral problems, criteria for the complete integration of systems of differential equations with applications to differential geometry, some aspects of differential forms on Riemannian manifolds related to Sobolev inequalities, Brownian motion on a Cartan-Hadamard manifold, etc. Two short biographical articles on the works of Sobolev in the 1930s and the foundation of Akademgorodok in Siberia, supplied with unique archive photos of S. Sobolev are included.
This volume is dedicated to the centenary of the outstanding mathematician of the 20th century, Sergey Sobolev, and, in a sense, to his celebrated work On a theorem of functional analysis, published in 1938, exactly 70 years ago, was where the original Sobolev inequality was proved. This double event is a good occasion to gather experts for presenting the latest results on the study of Sobolev inequalities, which play a fundamental role in analysis, the theory of partial differential equations, mathematical physics, and differential geometry. In particular, the following topics are discussed: Sobolev-type inequalities on manifolds and metric measure spaces, traces, inequalities with weights, unfamiliar settings of Sobolev type inequalities, Sobolev mappings between manifolds and vector spaces, properties of maximal functions in Sobolev spaces, the sharpness of constants in inequalities, etc. The volume opens with a nice survey reminiscence, "My Love Affair with the Sobolev Inequality," by David R. Adams.
This volume is dedicated to the eminent Georgian mathematician Roland Duduchava on the occasion of his 70th birthday. It presents recent results on Toeplitz, Wiener-Hopf, and pseudodifferential operators, boundary value problems, operator theory, approximation theory, and reflects the broad spectrum of Roland Duduchava's research. The book is addressed to a wide audience of pure and applied mathematicians.
Vladimir Maz'ya (born 1937) is an outstanding mathematician who systematically made fundamental contributions to a wide array of areas in mathematical analysis and in the theory of partial differential equations. In this fascinating book he describes the first thirty years of his life. He starts with the story of his family, speaks about his childhood, high school and university years, describe his formative years as a mathematician. Behind the author's personal recollections, with his own joys, sorrows and hopes, one sees a vivid picture of the time. He speaks warmly about his friends, both outside and inside mathematics. The author describes the awakening of his passion for mathematics and his early achievements. He mentions a number of mathematicians who influenced his professional life. The book is written in a readable and inviting way sometimes with a touch of humor. It can be of interest for a very broad readership.
In the present book the conditions are studied for the semi-boundedness of partial differential operators which is interpreted in different ways. Nowadays one knows rather much about L2-semibounded differential and pseudo-differential operators, although their complete characterization in analytic terms causes difficulties even for rather simple operators. Until recently almost nothing was known about analytic characterizations of semi-boundedness for differential operators in other Hilbert function spaces and in Banach function spaces. The goal of the present book is to partially fill this gap. Various types of semi-boundedness are considered and some relevant conditions which are either necessary and sufficient or best possible in a certain sense are given. Most of the results reported in this book are due to the authors.
Sobolev spaces play an outstanding role in modern analysis, in particular, in the theory of partial differential equations and its applications in mathematical physics. They form an indispensable tool in approximation theory, spectral theory, differential geometry etc. The theory of these spaces is of interest in itself being a beautiful domain of mathematics. The present volume includes basics on Sobolev spaces, approximation and extension theorems, embedding and compactness theorems, their relations with isoperimetric and isocapacitary inequalities, capacities with applications to spectral theory of elliptic differential operators as well as pointwise inequalities for derivatives. The selection of topics is mainly influenced by the author's involvement in their study, a considerable part of the text is a report on his work in the field. Part of this volume first appeared in German as three booklets of Teubner-Texte zur Mathematik (1979, 1980). In the Springer volume "Sobolev Spaces", published in English in 1985, the material was expanded and revised. The present 2nd edition is enhanced by many recent results and it includes new applications to linear and nonlinear partial differential equations. New historical comments, five new chapters and a significantly augmented list of references aim to create a broader and modern view of the area.
There are a wide range of applications in physics and structural mechanics involving domains with singular perturbations of the boundary. Examples include perforated domains and bodies with defects of different types. The accurate direct numerical treatment of such problems remains a challenge. Asymptotic approximations offer an alternative, efficient solution. Green's function is considered here as the main object of study rather than a tool for generating solutions of specific boundary value problems. The uniformity of the asymptotic approximations is the principal point of attention. We also show substantial links between Green's functions and solutions of boundary value problems for meso-scale structures. Such systems involve a large number of small inclusions, so that a small parameter, the relative size of an inclusion, may compete with a large parameter, represented as an overall number of inclusions. The main focus of the present text is on two topics: (a) asymptotics of Green's kernels in domains with singularly perturbed boundaries and (b) meso-scale asymptotic approximations of physical fields in non-periodic domains with many inclusions. The novel feature of these asymptotic approximations is their uniformity with respect to the independent variables. This book addresses the needs of mathematicians, physicists and engineers, as well as research students interested in asymptotic analysis and numerical computations for solutions to partial differential equations.
For the first time in the mathematical literature this
two-volume work introduces a unified and general approach to the
asymptotic analysis of elliptic boundary value problems in
singularly perturbed domains. While the first volume is devoted to
perturbations of the boundary near isolated singular points, this
second volume treats singularities of the boundary in higher
dimensions as well as nonlocal perturbations.
For the first time in the mathematical literature this
two-volume work introduces a unified and general approach to the
asymptotic analysis of elliptic boundary value problems in
singularly perturbed domains. This first volume is devoted to
domains whose boundary is smooth in the neighborhood of finitely
many conical points. In particular, the theory encompasses the
important case of domains with small holes. The second volume, on
the other hand, treats perturbations of the boundary in higher
dimensions as well as nonlocal perturbations.
Sobolev spaces become the established and universal language of partial differential equations and mathematical analysis. Among a huge variety of problems where Sobolev spaces are used, the following important topics are the focus of this volume: boundary value problems in domains with singularities, higher order partial differential equations, local polynomial approximations, inequalities in Sobolev-Lorentz spaces, function spaces in cellular domains, the spectrum of a Schrodinger operator with negative potential and other spectral problems, criteria for the complete integration of systems of differential equations with applications to differential geometry, some aspects of differential forms on Riemannian manifolds related to Sobolev inequalities, Brownian motion on a Cartan-Hadamard manifold, etc. Two short biographical articles on the works of Sobolev in the 1930s and the foundation of Akademgorodok in Siberia, supplied with unique archive photos of S. Sobolev are included.
'I never heard of "Ugli?cation," Alice ventured to say. 'What is it?'' Lewis Carroll, "Alice in Wonderland" Subject and motivation. The present book is devoted to a theory of m- tipliers in spaces of di?erentiable functions and its applications to analysis, partial di?erential and integral equations. By a multiplier acting from one functionspaceS intoanotherS, wemeanafunctionwhichde?nesabounded 1 2 linear mapping ofS intoS by pointwise multiplication. Thus with any pair 1 2 of spacesS, S we associate a third one, the space of multipliersM(S?S ) 1 2 1 2 endowed with the norm of the operator of multiplication. In what follows, the role of the spacesS andS is played by Sobolev spaces, Bessel potential 1 2 spaces, Besov spaces, and the like. The Fourier multipliers are not dealt with in this book. In order to emp- size the di?erence between them and the multipliers under consideration, we attach Sobolev's name to the latter. By coining the term Sobolev multipliers we just hint at various spaces of di?erentiable functions of Sobolev's type, being fully aware that Sobolev never worked on multipliers. After all, Fourier never did either.
The first systematic, self-contained presentation of a theory of arbitrary order ODEs with unbounded operator coefficients in a Hilbert or Banach space. Developed over the last 10 years by the authors, it deals with conditions of solvability, classes of uniqueness, estimates for solutions and asymptotic representations of solutions at infinity.
This volume is dedicated to the centenary of the outstanding mathematician of the 20th century, Sergey Sobolev, and, in a sense, to his celebrated work On a theorem of functional analysis, published in 1938, exactly 70 years ago, was where the original Sobolev inequality was proved. This double event is a good occasion to gather experts for presenting the latest results on the study of Sobolev inequalities, which play a fundamental role in analysis, the theory of partial differential equations, mathematical physics, and differential geometry. In particular, the following topics are discussed: Sobolev-type inequalities on manifolds and metric measure spaces, traces, inequalities with weights, unfamiliar settings of Sobolev type inequalities, Sobolev mappings between manifolds and vector spaces, properties of maximal functions in Sobolev spaces, the sharpness of constants in inequalities, etc. The volume opens with a nice survey reminiscence, "My Love Affair with the Sobolev Inequality," by David R. Adams.
We present a uni?ed approach to various sharp pointwise inequalities for a- lytic functions in a disk with the real part of the function on the circumference as the right-hand side. We refer to these inequalities as real-part theorems in reference to the ?rst assertion of such a kind, the celebrated Hadamard s real-part theorem (1892). The inequalities in question are frequently used in the theory of entire functions and in the analytic number theory. We hope that collecting these inequalities in one place, as well as general- ing and re?ning them, may prove useful for various applications. In particular, one can anticipate rich opportunities to extend these inequalities to analytic functions of several complex variables and solutions of partial di?erential eq- tions. The text contains revisions and extensions of recent publications of the authors 56]- 58] and some new material as well. The research of G. Kresin was supported by the KAMEA program of the Ministry of Absorption, State of Israel, and by the College of Judea and Samaria, Ariel. The work of V. Maz ya was supported by the Liverpool University and the Ohio State University. The authors record their thanks to these institutions. We are most grateful to Lev Aizenberg and Dmitry Khavinson for int- esting comments and enhancing our knowledge of the history of the topic."
This book develops a detailed theory of a generalized Sturm-Liouville Equation, which includes conditions of solvability, classes of uniqueness, positivity properties of solutions and Green's functions, asymptotic properties of solutions at infinity. Of independent interest, the higher-order Sturm-Liouville equation also proved to have important applications to differential equations with operator coefficients and elliptic boundary value problems for domains with non-smooth boundaries. The book addresses graduate students and researchers in ordinary and partial differential equations, and is accessible with a standard undergraduate course in real analysis.
The asymptotic analysis of boundary value problems in parameter-dependent domains is a rapidly developing field of research in the theory of partial differential equations, with important applications in electrostatics, elasticity, hydrodynamics and fracture mechanics. Building on the work of Ciarlet and Destuynder, this book provides a systematic coverage of these methods in multi-structures, i.e. domains which are dependent on a small parameter e in such a way that the limit region consists of subsets of different space dimensions. An undergraduate knowledge of partial differential equations and functional analysis is assumed.
|
You may like...
Revealing Revelation - How God's Plans…
Amir Tsarfati, Rick Yohn
Paperback
(5)
|