![]() |
![]() |
Your cart is empty |
||
Showing 1 - 8 of 8 matches in All Departments
This volume is part of the collaboration agreement between Springer and the ISAAC society. This is the first in the two-volume series originating from the 2020 activities within the international scientific conference "Modern Methods, Problems and Applications of Operator Theory and Harmonic Analysis" (OTHA), Southern Federal University in Rostov-on-Don, Russia. This volume is focused on general harmonic analysis and its numerous applications. The two volumes cover new trends and advances in several very important fields of mathematics, developed intensively over the last decade. The relevance of this topic is related to the study of complex multiparameter objects required when considering operators and objects with variable parameters.
Transmutation operators in differential equations and spectral theory can be used to reveal the relations between different problems, and often make it possible to transform difficult problems into easier ones. Accordingly, they represent an important mathematical tool in the theory of inverse and scattering problems, of ordinary and partial differential equations, integral transforms and equations, special functions, harmonic analysis, potential theory, and generalized analytic functions. This volume explores recent advances in the construction and applications of transmutation operators, while also sharing some interesting historical notes on the subject.
This textbook provides a thorough overview of mathematical physics, highlighting classical topics as well as recent developments. Readers will be introduced to a variety of methods that reflect current trends in research, including the Bergman kernel approach for solving boundary value and spectral problems for PDEs with variable coefficients. With its careful treatment of the fundamentals as well as coverage of topics not often encountered in textbooks, this will be an ideal text for both introductory and more specialized courses. The first five chapters present standard material, including the classification of PDEs, an introduction to boundary value and initial value problems, and an introduction to the Fourier method of separation of variables. More advanced material and specialized treatments follow, including practical methods for solving direct and inverse Sturm-Liouville problems; the theory of parabolic equations, harmonic functions, potential theory, integral equations and the method of non-orthogonal series. Methods of Mathematical Physics is ideal for undergraduate students and can serve as a textbook for a regular course in equations of mathematical physics as well as for more advanced courses on selected topics.
This book provides a new mathematical theory for the treatment of
an ample series of spatial problems of electrodynamics, particle
physics, quantum mechanics and elasticity theory. This technique
proves to be as powerful for solving the spatial problems of
mathematical physics as complex analysis is for solving planar
problems.
Transmutation operators in differential equations and spectral theory can be used to reveal the relations between different problems, and often make it possible to transform difficult problems into easier ones. Accordingly, they represent an important mathematical tool in the theory of inverse and scattering problems, of ordinary and partial differential equations, integral transforms and equations, special functions, harmonic analysis, potential theory, and generalized analytic functions. This volume explores recent advances in the construction and applications of transmutation operators, while also sharing some interesting historical notes on the subject.
Pseudoanalytic function theory generalizes and preserves many crucial features of complex analytic function theory. The Cauchy-Riemann system is replaced by a much more general first-order system with variable coefficients which turns out to be closely related to important equations of mathematical physics. This relation supplies powerful tools for studying and solving SchrAdinger, Dirac, Maxwell, Klein-Gordon and other equations with the aid of complex-analytic methods. The book is dedicated to these recent developments in pseudoanalytic function theory and their applications as well as to multidimensional generalizations. It is directed to undergraduates, graduate students and researchers interested in complex-analytic methods, solution techniques for equations of mathematical physics, partial and ordinary differential equations.
This volume is part of the collaboration agreement between Springer and the ISAAC society. This is the first in the two-volume series originating from the 2020 activities within the international scientific conference "Modern Methods, Problems and Applications of Operator Theory and Harmonic Analysis" (OTHA), Southern Federal University in Rostov-on-Don, Russia. This volume is focused on general harmonic analysis and its numerous applications. The two volumes cover new trends and advances in several very important fields of mathematics, developed intensively over the last decade. The relevance of this topic is related to the study of complex multiparameter objects required when considering operators and objects with variable parameters.
This book provides an introduction to the most recent developments in the theory and practice of direct and inverse Sturm-Liouville problems on finite and infinite intervals. A universal approach for practical solving of direct and inverse spectral and scattering problems is presented, based on the notion of transmutation (transformation) operators and their efficient construction. Analytical representations for solutions of Sturm-Liouville equations as well as for the integral kernels of the transmutation operators are derived in the form of functional series revealing interesting special features and lending themselves to direct and simple numerical solution of a wide variety of problems. The book is written for undergraduate and graduate students, as well as for mathematicians, physicists and engineers interested in direct and inverse spectral problems.
|
![]() ![]() You may like...
Kirstenbosch - A Visitor's Guide
Colin Paterson-Jones, John Winter
Paperback
Revealing Revelation - How God's Plans…
Amir Tsarfati, Rick Yohn
Paperback
![]()
The Lie Of 1652 - A Decolonised History…
Patric Tariq Mellet
Paperback
![]()
|